Изготовление печатных форм. Технология изготовления печатных форм Схема аналоговая технология изготовления печатных форм

Реферат

Цель работы :

Разработка цифровой технологии изготовления печатных форм плоской офсетной печати по схеме “компьютер – печатная форма”.

Работа содержит: 35 страниц, 2 иллюстрации, 1 схему, 6 таблиц.

Ключевые слова:

Технологии СТР(Computer-to-Plate), CTPress (Computer to Press), CTcP (Computer To Conventional Plate), светочувствительные пластины, термочувствительные пластины, термодеструкция, термоструктурирование.

Введение…………………………………………………………………………...4

Технические характеристики и показатели оформления издания……………..5

Общая схема изготовления издания……………………………………………..7

Выбор способа печати…………………………………………………………….8

Выбор технологии изготовления печатных форм……………………………....9

Выбор формных пластин………………………………………………………..12

Выбор марки пластин……………………………………………………………15

Выбор СТР устройства……………………………………………………….…19

Контроль качества печатных форм…………………………………………..…25

Расчетная часть………………………………………………………………..…27

Спуск полос……………………………………………………………………....30

Заключение………………………………………………………………………31

Список используемой литературы……………………………………………..32

Введение

Формные процессы являются неотъемлемой частью при воспроизведении той или иной продукции. Во многом они определяют качество будущего издания. Так, например, если не добросовестно сделать монтаж фотоформ, изготовить сами печатные формы, то при печати тиража могут возникнуть проблемы, связанные с не совмещением красок, перекосом изображения и т.д.

Появление цифровой технологии изготовления печатных форм существенно облегчило и упростило формные процессы. Её быстрое развитие обусловлено рядом причин и, самой главной, на мой взгляд, является представление исходной информации в цифровом виде. За счет этого сокращается длительность технологического процесса, качество продукции улучшается, а это в условиях жесткой конкуренции является определяющим фактором.

Целью и задачей данной курсовой работы является более подробное изучение цифровой технологии “компьютер – печатная форма”, ее актуальность на сегодняшний день и преимущества по отношению к другим технологиям.

Технические характеристики и показатели оформления издания

Наименование показателя и характеристик Издание, принятое к разработке процесса
1. Вид издания: –по целевому назначению –по материальной основе -по знаковой природе информации –по периодичности Журнал «Publish» Журнал Текстово-изобразительное Периодическое издание (выходит раз в месяц)
2. Формат издания: –произведение ширины на высоту –доля бумажного листа 600*900 мм 1/8
3. Объем издания: –в физических печатных листах -в бумажных листах -в страницах 14,5(блок)+0,5(обложка) 7,25(блок)+0,25(обложка) 112(блок)+4(обложка)
4. Тираж издания (в тыс. экз.)
5. Полиграфическое оформление: -красочность издания и его составных элементов -характер внутритекстовых изображений -линиатура растрирования -общий процент иллюстраций -способ печати 4+4 Растровые иллюстрации 175 lpi 40% Плоская офсетная печать с увлажнением пробельных элементов
6. Конструкция издания: -количество тетрадей и их объем -количество и характер дополнительных элементов издания -способ фальцовки тетрадей -способ комплектовки блоков -тип и конструкция обложки 7 шестнадцатистраничных тетрадей+2 четырехстраничных тетрадей 16-стр тетрадь: трехсгибная фальцовка 4-стр тетрадь: односгибная фальцовка Подборкой Для скрепления используется бесшвейное клеевое скрепление Тип №2
7. Применяемая для печатания бумага: 90 г/ м 2 целлюлозная двойного мелования
8. Применяемая для печатания краска: 0,96 см 3 /г
9. Варианты оригинала Оригинал представлен в цифровом виде: иллюстрации – цифровые фотографии, текст – набранный в цифровом виде

Общая схема изготовления издания

Оригинал

Файл с текстом Файл с иллюстрацией

Обработка текстовой и изобразительной информациив программах Adobe PhotoShop, QuarkXPress, FreeHand, Adobe Illustrator

Изготовление цифровой цветопробы

Файл ЭВПФ

Запись изображения на формную пластину

Проявление

Брошюровочно-переплетные и отделочные работы

Готовое издание

Выбор способа печати

На данный момент офсетная печать является наиболее развитым и часто
используемым способом печати. За последние десятилетия она прогрессивно
развивалась, что обусловлено рядом причин:

Наличие высокопроизводительного и технологически гибкого печатного
оборудования;

Внедрение в практику достаточно гибких и эффективных вариантов формного производства;
- интенсивное использование электронной техники на всех стадиях подготовки издания к печати и проведения печатного процесса, а также достаточно широкое внедрение элементов стандартизации и оптимизации.

Основным отличием данного способа печати от других является использование офсетного цилиндра при переносе краски с печатной формы на запечатываемый материал.

В способе плоской офсетной печати используются печатные формы, на
которых печатающие и пробельные элементы расположены практически в одной плоскости. В зависимости от принципа формирования пробельных элементов плоская офсетная печать может быть реализована в виде офсетного способа с увлажнением или реже – без увлажнения пробельных элементов.

Трудности с которыми сталкиваются в офсетной печати с увлажнением пробельных элементов связаны с поддержанием в процессе печатания баланса “краска - вода”. Требуются дополнительные затраты времени и расход бумаги. Можно столкнуться с проблемой нестабильности качества оттисков из-за колебания водно – красочного баланса. В офсетном способе печати без увлажнения пробельных элементов с такими проблемами не сталкиваются. Из-за отсутствия увлажнения при печатании обеспечивается повышенная точность совмещения красок на оттиске, упрощается конструкция печатной машины. Высокая стоимость формных пластин и печатных красок, повышенные требования к регулировкам машины и чистоте красочного аппарата объясняют не частое применение офсетной печати без увлажнения пробельных элементов.

Выбор технологии изготовления печатных форм

В настоящее время при офсетном способе печати для изготовления печатных форм применяют цифровые технологии.

Цифровые технологии – это технологии основанные на использовании поэлементного способа изготовления печатной формы путем вывода (записи) изображения на формной пластине на основе цифровых данных, полученных из компьютера. Цифровые технологии обеспечивают практически полную автоматизацию процесса, тем самым позволяют сократить не только длительность производственного процесса, но и повысить качество. Разновидностью цифровой технологии является лазерная технология, которая реализуется с использование лазерного излучения.

Цифровые лазерные технологии классифицируются на:

Технологии, которые реализуются по схеме СТР (Computer-to-Plate) (предполагают запись изображения на автономном формовыводном устройстве);

Технологии Computer to Press (CTPress) (предполагают изготовление печатных форм непосредственно в печатной машине; пластины не требуют “мокрой обработки”);

Технологии Computer To Conventional Plate (CTcP) (используют монометаллические пластины с копировальным слоем).

Технология Computer – to – Plate, известная несколько десятилетий, стала широко внедряться только последние 5 лет. Это обусловлено тем, что появились достаточно тиражестойкие формные материалы, пригодные для поэлементной записи изображений, эффективное оборудование, осуществляющее прямое экспонирование формного материала с высоким разрешением и скоростью, надежные программные средства допечатной подготовки изданий.

По своей сути технология CTP представляет собой управляемый компьютером процесс изготовления печатной формы методом прямой записи изображения на формный материал. Этот процесс, который реализуется с помощью однолучевого или многолучевого сканирования, более точный, так как каждая пластина является первой оригинальной копией, изготовленной с одних и тех же цифровых данных. В результате достигаются большая резкость точек, более точная приводка, более точное воспроизведение всего диапазона тональности исходного изображения, меньшее растискивание растровой точки одновременно со значительным ускорением подготовительных и приладочных работ на печатной машине.

У CTP-технологии очевидные преимущества по сравнению с традиционной технологией фотонабора и формного процесса, которые можно сформулировать следующим образом:
- сокращается время технологического цикла изготовления печатных форм (не нужны операции обработки фотоматериала, копирования фотоформ на формные пластины и в ряде случаев обработки экспонированных формных пластин);
- исключаются из производства фотонаборные автоматы, копировальное оборудование, а это означает экономию производственных площадей, затрат на приобретение и эксплуатацию техники, электроэнергии, сокращение численности обслуживающего персонала;
- повышается качество изображения на печатных формах благодаря снижению уровня случайных и систематических помех, возникающих при экспонировании и обработке традиционных фотоматериалов (вуаль, ореольность) и копировании монтажей на формные пластины;
- улучшаются экологические условия на полиграфическом предприятии из-за отсутствия химической обработки пленок; повышается культура производства и совершенствуется организация технологического процесса.
Однако быстрое освоение технологии Compuer-to-Plate в настоящее время для многих полиграфических предприятий затруднено рядом проблем:

Проблемы с корректурными оттисками;

Получение корректурного оттиска спуска полос большого формата крайне затруднительно, так как нет принтеров, которые могут вывести оттиск. Если при выводе фотоформ большого формата возможен визуальный контроль с помощью просмотровых столов, то читать печатную форму неудобно, поскольку изображение на ней слабоконтрастное и рассмотреть что-либо невозможно. Проконтролировать полученную форму можно либо на пробопечатном станке, либо уже по оттиску на самой печатной машине, что экономически довольно рискованно. Любая неточность, замеченная уже на оттиске, приводит к повторению всех технологических операций и, как следствие, к повышению себестоимости допечатной подготовки (повторное экспонирование фотоформ обходится все-таки дешевле).

Повышенные требования к квалификации оператора;

допечатная подготовка должна проводиться намного тщательнее.

Проблемы с начальными инвестициями;

Если в производстве используются печатные машины большого формата (от А1 и выше), при внедрении CTP необходимы значительные начальные инвестиции. Связано это с тем, что печатать с составных печатных форм невозможно. Для полноценного использования печатной машины необходимо экспонировать формы полного формата. Приобретение системы CTP такого формата обходится недешево. Это означает длительный срок окупаемости системы, а также трудности с единовременным выделением значительной суммы капитальных затрат.

Однако системы Computer – to- Plate становятся не просто данью моде, а жизненной необходимостью выживания на быстро меняющемся рынке полиграфических услуг. Тиражи падают, сроки сокращаются, требования к качеству растут – конкуренция на каждом шагу. Вывод один: минимизировать финансовые и временные расходы на допечатную подготовку. Системы СТР успешно решают эту задачу.

Не редко становится вопрос выбора между системами СТР и CTPress, где печатная форма изготовляется на укрепленном на формном цилиндре печатной машины формном материале. Может создаться впечатление, что выбора как такового нет, причем главный аргумент – отсутствие ограничений по формату в системе СТР. Конечно гибкость форматов играет не последнюю роль, но не стоит быть столь категоричными.

Система СТPress – это заманчивое предложение для цифровых типографий. Многие из них переходят на офсетные заказы, не имея при этом ни малейшего желания внедрять традиционный офсет. При малых и средних тиражах себестоимость оттиска по сравнению с цифровыми системами будет меньшей. Так же во внимание следует взять минимум отходов и ускоренные приладки по сравнению с традиционными машинами.

Рынок же длинных тиражей остается прерогативой традиционных машин и СТР, поскольку они экономически оправдывают длительную настройку, макулатуру из-за регулировки приводки и баланса краска/вода, характерные для традиционной печати.

Выбор между СТР и СТPress определяется исключительно потребностями заказчиков типографии, а аргументов немало в пользу обеих технологий. CTcP (Сomputer to Conventional Рlate) реализуется с помощью традиционных монометаллических пластин. В этой цифровой технологии используются UV-Setter – устройства, где формируются пиксели. Основным элемент, обеспечивающим запись, является микрозеркальный чип. В качестве источника излучения используются ультрафиолетовые лампы. Растровая точка в СТсР имеет квадратную форму за счет чего получается достаточно высокое качество. При усовершенствовании технологии запись осуществляется уже несколькими записывающими головками и не в стационарном положении, а при их перемещении. Вместо ультрафиолетовых ламп устанавливают матрицу фиолетовых диодов у которых мощность более высокая. Для повышения производительности используют пластины с негативным копировальным слоем, так как:

Считается, что они более светочувствительные;

Производительность увеличивается за счет самого принципа формирования изображения (считается, что печатающих элементов в среднем на форме 30%; при проявлении негативных слоев формируются печатающие элементы, следовательно производительность увеличивается, нежели чем при формировании 70% пробельных элементов в позитивных слоях).

В целом СТсР это цифровая технология со всеми преимуществами, свойственными ей: повышение качества за счет исключения операций изготовления фотоформ и ручного монтажа, сокращение времени изготовления печатной формы, сокращение персонала.

В курсовой работе для изготовления печатных форм я выбрала технологию СТР,так как эта система намного экономичнее и универсальнее. ,

Выбор формных пластин

Оборудование применяемое в технологии СТР:

Формные пластины с приемным слоем (светочувствительным или термочувствительным);

Формовыводные устройства;

Тестовые шкалы необходимые для контроля;

Если необходимо то процессоры для обработки формных пластин.

Процессы, происходящие под действием излучения в приемных слоях формной пластины, зависят от:

Длины волны;

Мощности излучения;

Температуры;

Типа используемого приемного слоя.

Различают два типа воздействия:

Световое;

Тепловое.

Световое воздействие лазерного УФ- и видимого диапазона длин волн обеспечивает возможность протекания тем же процессам, которые возникают под действием излучения при копировании и проекционном экспонировании. Поглощение энергии лазерного излучения обеспечивает протекание фотохимических процессов. Фотохимические процессы сопровождаются либо восстановлением галогенидов серебра и диффузией комплексов серебра (серебросодержащие пластины), либо фотополимеризацией (фотополимерные пластины). В отличие от светового при реализации теплового воздействия лазерного ИК- излучения обеспечивается протекание термических процессов, таких как термодеструкция и термоструктурирование, возгонка (изменение агрегатного состояния слоя).

Для обоих типов воздействий характерно наличие аберраций, причем природа и последствия этих аберраций различны. При использовании светового лазерного излучения основные аберрации связаны со светорассеиванием и отражением в толще материала. В результате этого засвечивается та область, в которою излучение не должно попадать. Тем самым происходит увеличение экспонирующей зоны и как следствие искажение геометрических размеров изображения. Аберрации при тепловом воздействии связаны с тем, что материал подвергается действию температуры. Причем происходит это в результате точечного нагревания. При этом одновременно прогреваются и соседние области. Дополнительное влияние оказывает струя раскаленных продуктов реакции, которые дают вторичный разогрев в области, которая прилегает к области точечного нагревания. Влияние этого процесса аналогично влиянию светорассеивания, но из-за инерционности теплового процесса, существует возможность уменьшения таких аберраций путем, например, сокращения длительности воздействия излучения за счет скорости перемещения лазерного пучка. Благодаря этому появляется возможность сведения к минимуму тепловых аберраций в отличие от световых, которые всегда имеют место. При выборе пластин следует уделить внимание этому факту. Однако есть и другие факторы, которые следует учитывать при выборе пластин для издания, которое будет печататься.

При выборе светочувствительных или термочувствительных пластин следует обращать внимание на их основные характеристики: энергетическая чувствительность, спектральная чувствительность, интервал воспроизводимых градаций, тиражестойкость. Говоря о энергетической чувствительности, количество энергии на единицу поверхности необходимой для протекания процессов в приемных слоях формных пластин, наиболее чувствительными являются серебросодержащие пластины, а наименее чувствительными- термочувствительные. Следовательно с целью экономии энергии оптимальными являются светочувствительные пластины. Репродукционно- графические свойства оцениваются интервалом градаций S отн. Термочувствительные пластины, требующие после экспонирования химической обработки, позволяют воспроизводить S отн от 1% до 99% при линиатуре 200-300 лин/дюйм. В платинах не требующих такую обработку – от 2% до 98% при линиатуре 200 лин/дюйм. Пластины с фотополимеризуемыми слоями характеризуются значениями S отн, равными 2-98% при 200 лин/дюйм, у серебросодержащих пластин – 1- 99% при 300 лин/дюйм. Термочувствительные слои невозможно ни недоэкспонировать, ни переэкспонировать. Значит при стабильности мощности излучения это позволяет получить большую резкость элементов изображения – так называемую “жесткую точку” и обеспечить качественное воспроизведение высоких светов и глубоких теней, что очень важно при печати журналов. А если упомянуть еще о термочувствительных пластинах на металлической подложке то, в результате дополнительного отражения излучения от подложки уменьшается размытие и повышается резкость в зоне действия излучения.

Тиражестойкость форм на полимерной подложке составляет 10-15 тыс.отт., светочувствительных и термочувствительных пластин на металлической подложке – от 100 до 400 тыс.отт. Но путем термообработки тиражестойкость на некоторых типах форм может повыситься.

Для журнальной продукции определяющим параметром является качество изображения на форме, таким образом предпочтение следует отдать термочувствительным пластинам, которые обладают достаточно высокими репродукционно – графическими показателями. Следует так же упомянуть что, запись и обработка изображения на термочувствительных пластинах может осуществляться на свету, поскольку они чувствительны к ИК – диапазону длин волн.

Исходя из выше перечисленных показателей и свойств для печати журнала будут использованы термочувствительные пластины.

Изготовление формы на термочувствительных пластинах может осуществляться различными способами: термоструктурированием, термодеструкцией и изменением агрегатного состояния.

Пластины с термоструктурированным слоем являются негативными и имеют более короткий срок службы по сравнению с пластинами на основе термодеструкции. Пластинам 1-го поколения необходим термообжиг после экспонирования. Но в настоящее время существуют пластины, содержащие в термочувствительном слое специальные термальные частицы, таким пластинам не нужен термообжиг. К пластинам предъявляются более жесткие требования к хранению.

При термодеструкции форма изготавливается путем экспонирования пластины и её проявления. Пластины являются позитивными. С целью экономии времени изготовления печатной формы в данной работе будут использоваться термочувствительные пластины на основе термодеструкции.

Следует упомянуть о появившихся относительно недавно на полиграфическом рынке беспроцессных пластинах. Эти пластины немедленно после экспонирования готовы к установке в печатную машину. Преимущества очевидны – экономия на проявочной машине, её обслуживании, подключении к воде, канализации, утилизации отходов, электроэнергии, занимаемой площади. Косвенные преимущества так же не мало важны – стабильные формы, не зависящие от старения проявителя, его температуры, грязи в проявке, состояния щеток. Это значит – снижение брака. В основном главный производитель таких пластин Kodak Thermal Direct, но недавно появились Fuji Pro-T. Существует мнение, что изображение на этих пластинах на готовой форме почти незаметно, поэтому контролировать её качество с помощью приборов затруднительно, а перед монтажом сложно проверить изображения и спуск полос. Однако работающее на таких пластинах специалисты утверждают, что контраст достаточен для современных приборов, чтения текста 12 кегля и даже установки оператором “на глазок” красочных зон. Основной недостаток беспроцессных пластин маркетинговый – цена (“за преимущества”).

Выбор марки пластин

Термальные пластины производятся известными фирмами - Kodak, Agfa, Fuji, Lastra, CREO.

Компания Kodak предлагает СТР пластины собственного производства для любых устройств с ИК-источником излучения, длиной волны 830 нм. В производственную программу термальных пластин Creo входят пластины РТР (позитивные), Mirus и Fortis (негативные). Производственные мощности расположены по всему миру – Европа, Южная Африка, США.

Особенности:

1. Пластины надежны в процессе печати и в процессе обработки и обладают исключительной устойчивостью к химическим воздействиям, износостойкостью и устойчивостью к появлению царапин. Подобная надежность означает, что они могут поставляться в упаковках без прокладочной бумаги, что наиболее удобно для устройств без автоматической загрузки пластин. Этот факт позволяет еще и снизить стоимость пластин.

2. Пластины серии РТР ориентированы на коммерческую печать. Опыт их исполь-зования у российских потребителей показал, что они чрезвычайно стабильны в широком диапазоне условий обработки и печати и обеспечивают заявленную тиражестойкость без обжига. Высокая разрешающая способность пластин позволяет достичь тончайшей проработки деталей изображения, особенно в светах и тенях.

3. Обе термальные негативные пластины как ИК- так и УФ-чувствительны, что позволяет использовать и цифровой и аналоговый способ производства форм. Подобное свойство пластин обеспечивает возможность типографии удовлетворить потребности любых клиентов – как перешедших на «цифру», так и привыкших работать с пленками.

4. Технология зернения алюминиевой основы при производстве пластин обеспечивает исключительную разрешающую способность, высокую стойкость печатных элементов, быстрое достижение баланса краска-вода. В печати наблюдается в несколько раз меньшее потребление увлажняющего раствора в сравнении с пластинами других производителей. Это наилучшим образом отражается на качестве печатной продукции – уменьшается растискивание, снижается расход печатной краски, меньше увлажняется и деформируется бумага. Это имеет особенное значение для типографий, выпускающих большой объем высококачественной печатной продукции и имеющих в своем парке ролевые печатные машины.

5. Высокий уровень чувствительности пластин позволяет достичь максимальных паспортных скоростей самых «быстрых» устройств вывода форм, таких как TrendSetter News 200 – 93 формы в час при разрешении 1200 dpi, TrendSetter 800 II V – 34 формы в час при разрешении 2400 dpi. Непревзойденное качество пластин уже высоко оценили российские полиграфисты.

Agfa выпускает офсетные пластины самых различных типов, охватывающие весь спектр возможного применения, начиная с аналоговых прямопозитивных и негативных пластин, и кончая так называемыми "цифровыми" пластинами для прямого лазерного экспонирования по технологии Computer-to-Plate. Благодаря громадному накопленному опыту при производстве офсетных пластин, постоянному совершенствованию технологии их изготовления, уникальным научным разработкам, Agfa в течении десятилетий удерживает лидерство практически по всем направлениям.

Компания Agfa Graphics постоянно уделяла самое пристальное внимание термальной технологии CtP, и это не удивительно, так как по сведениям самой компании этот сегмент рынка цифровых пластин является сегодня самым большим.

Термочувствительные пластины Agfa Thermostar P970 и P971 предназначены для экспонирования в системах CtP инфракрасными лазерами (ИК) с длиной волны 830 (Р970) и 1064 (Р971). Пластины Thermostar обладают великолепными функциональными свойствами, так как отличаются от всех известных термопластин большой скоростью формирования изображения за счет высокой чувствительности к ИК-излучению и простотой обработки с использованием стандартного щелочного проявителя. «Секрет» подобных свойств заключается в уникальной двухслойной конструкции пластин, которая позволила соединить лучшие положительные свойства обычных прямопозитивных пластин с достоинствами термочувствительных.

Разрешающая способность обеспечивает воспроизведение изображения с растром в 250 lpi. Позволяют воспроизводить S отн от 1% до 99%. Тиражеустойчивость 150000 без термообработки и более 1000000 оттисков после обжига. Рекомендуемый проявитель Agfa TD5000 либо TD6000C (поставляется в 20 литровых канистрах), регенератор TD6000B (поставляется в 20 литровых канистрах).

Позитивные полимерные пластины Agfa Thermostar показывают лучшие результаты при использовании во всех основных термальных (830 нм) системах СТР.

Основные преимущества:

Не требуют предварительного нагрева, что существенно сокращает время допечатного процесса;

Обращение при дневном свете, пластины чувствительны только к ИК-излучению, создает дополнительные удобства для операторов;

Использование стандартной химии, которая может использоваться вперемежку с другими пластинами - это сокращение расходов и времени.

Пластины могут обрабатываться через несколько часов после экспонирования, обеспечивая тем самым дополнительную гибкость производственного процесса.

Использование Thermostar расширяет возможности, поддерживая тиражи до 150 000 экземпляров без обжига и более одного миллионы после него.

В курсовой работе будут применяться именно эти пластины.Формат пластины и ее толщина подбирается с учетом паспортных данных печатной машины. Данный тираж будет отпечатан на печатной машине Heidelberg SM-102-4L. Формат печатной формы в этой машине 770*1030 мм.

Но хотелось бы упомянуть о новом семействе термочувствительных пластин - Energy, Energy Marathon и Energy Elite. Для их проявления используют специально разработанный новый термальный проявитель Energy , который имеет более длительный, до шести недель, срок службы и обладает прекрасной растворяющей способностью, обеспечивающей чистоту как пробелов на пластине, так и оборудования.

Краткие сведения о продуктах:

1. Пластины Agfa Energy - это термочувствительные цифровые пластины широкого применения, которые постепенно заменят Thermostar Р970. Новые пластины отличает большая визуальная контрастность слоя, повышенная светочувствительность и очень высокая стабильность свойств. Благодаря новациям в области обработки алюминия, Energy обладают прекрасными печатными свойствами, включая очень широкий интервал параметров печатного процесса и черезвычайно быстрое и устойчивое достижение баланса краска/вода при запуске машины. Energy могут экспонироваться и обрабатываться практически во всех плейтсеттерах и проявочных процессорах любых известных фирм. Для проявления предлагается уже упоминаемый выше проявитель Energy, раннее внедрение которого должно обеспечить легкое освоение новых пластин.Пластины обладают большей тиражестойкостью - более 150000 оттисков без обжига и более миллиона с обжигом при стандартных условиях печати. Высокая разрешающая способность позволяет воспроизводить растровые точки обычного растра в диапазоне 1 - 99% при линиатуре 200 lpi и стохастического до 340 lpi (Sublima).

2. Пластины Agfa Energy Marathon. предназначены для печати больших тиражей в трудных условиях. Благодаря новой технологии зернения алюминия Marathon, пластины, после закалки, в тяжелых условиях печати на низкосортных бумагах без покрытия и с использованием других проблемных материалов выдерживают тиражи более миллиона оттисков, что недостижимо для любых других термальных пластин. Особая технология обработки алюминия позволяет не только избавиться от частой смены форм, ранее неизбежной в таких условиях, но и значительно сократить количество остановок из-за смывок офсетного полотна. Energy Marathon являются лучшим решением, если у Вас есть печь для обжига и необходимость печатать большие тиражи в сложных условиях.

3. Пластины Agfa Energy Elite также предназначены для печати больших тиражей при трудных условиях, но без термообработки.

Для того, чтобы обеспечить подобные свойства, Agfa разработала особый запатентованный способ двухуровневого строения копировального слоя. Верхний слой является термочувствительным, а нижний обладает хорошими прочностными свойствами и великолепной химической стойкостью. В результате, формы изготовленные на пластинах Energy Elite без термообработки выдерживают тираж до 350000 оттисков и допускают работу с УФ-красками, заменителями изопропилового спирты, агрессивными смывками и другими химически активными материалами.Как и у всех пластин семейства Energy, у них высокая чувствительность, обеспечивающая быстрое экспонирование форм, и прекрасные печатные свойства. Пластины позволяют не только быстро достигать устойчивого баланса краска/вода, но и требуют в печати меньшего количества увлажняющего раствора. Для обработки данных пластин используется специальный проявитель Elite, обеспечивающий стабильную чистоту пробелов и отсутствие осадка в проявочном процессоре.

Выбор СТР оборудования

В современных системах CTP, ориентированных на изготовление офсетных и фотополимерных форм высокой и флексографской печати, применяют лазерные формовыводные устройства трех основных принципов:

Барабанные, выполненные по технологии "внутренний барабан", когда форма расположена на внутренней поверхности неподвижного цилиндра;
- барабанные, выполненные по технологии "внешний барабан", когда форма расположена на наружной поверхности вращающегося цилиндра;
- планшетные, когда форма расположена в горизонтальной плоскости неподвижно или совершает движение в направлении, перпендикулярном направлению записи изображения.

Достоинствами устройств первого принципа построения являются достаточность одного источника излучения, благодаря чему достигается высокая точность записи; простота фокусировки и отсутствие необходимости юстировки лазерных лучей; большая оптическая глубина резкости; простота установки перфорирующего устройства для штифтовой приводки форм; простота замены источников излучения (исчезающая при использовании твердотельных лазеров).
Внешнебарабанные устройства имеют такие достоинства, как невысокая частота вращения барабана благодаря наличию многочисленных лазерных диодов; долговечность лазерных диодов; невысокая стоимость запасных источников излучения; возможность экспонирования больших форматов. К их недостаткам относят необходимость значительного числа лазерных диодов и, как следствие, такого же числа информационных каналов; необходимость трудоемкой юстировки; невысокую глубину резкости; сложность установки устройств для перфорирования форм.
И в том, и в другом случаях экспонирование термочувствительных формных пластин выполняется в инфракрасной области спектра. При этом заметны преимущества внешнебарабанного принципа, позволяющего максимально приблизить источник энергии к поверхности печатной формы. У устройств с записью на внутреннюю поверхность барабана расстояние от пластины до развертывающего элемента, как правило, соответствует радиусу барабана и становится тем больше, чем больше формат пластины. Для того чтобы генерировать исключительно маленькую и резкую точку на таком расстоянии, требуется дорогостоящая оптика.

Главным требованием, предъявляемым к цифровым технологиям для воспроизведения журнальной продукции, является качество, а скорость записи не имеет для таких изданий существенного значения. Поэтому могут быть использованы лазерные экспонирующие устройства, которые обеспечивают запись с большим разрешением и хорошей повторяемостью. Это – устройства барабанного типа, причем как с внутренним, так и с внешним барабаном.

Важным при выборе экспонирующего устройства являются его технические характеристики:

Разрешение записи.

Скорость записи. Зависит от разрешения записи: чем оно выше, тем ниже скорость записи.

Повторяемость (характеризуют максимальным не совмещением точек по формату на определенном количестве подряд записанных копий).

В курсовой работе для печати журнала были выбраны пластины фирмы Agfa, При выборе экспонирующего и проявляющего оборудования будет использована эта же марка.

Agfa:Avalon – СТР устройство с внешним барабаном.

Предназначенно для вывода пластин 8-up форматом до 1160х820 мм. Avalon LF поставляется в пяти базовых конфигурациях с производительностью от 10 до 40 пластин в час (для модели ХХТ). С беспроцессорными пластинами Azura, Avalon XT гарантирует скорость 23 пластины в час.
Загрузка пластин осуществляется при дневном свете, толщина пластин от 0,15 до 0,3 мм. Типы пластин – AGFA:Thermostar P970 или другие равного качества, чувствительные к 830 нм. Тип лазера – ИК-лазерная головка с длиной волны 830 нм и микролинзой. В оптической системе используется светоклапанная матрица GLV II. В головке нового поколения ведется контроль излучения каждого лазерного диода, что позволяет более точно экспонировать каждую точку на поверхности пластины и оптимально нагружать каждый отдельный источник света, продлевая срок службы головки.

В обычном режиме лазеры работают на половине номинальной мощности. При выходе из строя одного из них мощность каждого из оставшихся увеличивается так, чтобы общая мощность экспонирующего блока не изменилась. Так удаётся поддерживать заявленную постоянную скорость даже при выходе из строя половины лазеров.
Загрузка пластин может осуществляться как вручную, так и автоматически. Доступны два вида автозагрузчиков – однокассетный, на 50 кассет (Job Level Automation), так и Plate Manager емкостью до четырех кассет и автоматическим удалением прокладочной бумаги. Проявочный процессор может быть подключен как «в линию», так и работать в режиме офф-лайн
Внутренняя пробивка форм доступна как опция для каждой модели Avalon LF. Доступны также стандартный или специальный вариант перфорационных пробойников нужных систем приводки.

  • II. Задания на множественный выбор. 21. Среди приведенных правонарушений укажите административные проступки:
  • II. Задания на множественный выбор. 21. Установите соотношение между понятиями и определениями.

  • Рис. 5.13. Схема процессора для обработки монометаллических офсетных копий: 1 - устройство подачи пластин; 2 - секция проявления; 3 - резервуар с проявителем; 4 - система рециркуляции проявителя; 5 - устройство подачи пластин; б - секция промывки; 7 - система рециркуляции воды; 8 - секция гуммирования; 9 - резервуар с гуммирующим раствором; 10 - система рециркуляции гуммирующего раствора; 11 - секция сушки; 12 - устройство вывода пластин Рис. 6.13. Прохождение излучения при копировании в зоне кромки диапозитива: 1 - диапозитив; 2 - копировальный слой; 3 - подложка

    Развитие формных процессов плоской офсетной печати со второй половины прошлого столетия шло по следующим основным направлениям.

    Разработка новых копировальных слоев. В 1960 г. в ФРГ были разработаны два новых слоя: позитивный на основе ОНХД и негативный фотополимеризуемый слой (см. гл. 3). Эти слои, не имеющие темнового дубления, стали быстро вытеснять хромированные полимеры. Уже к концу 60-х гг. на мировом рынке появились предварительно очувствленные монометаллические, а несколько позже и полиметаллические формные пластины одноразового использования.

    Они позволили изготавливать монометаллические и биметаллические формы с улучшенными репродукционно-графическими и технологическими свойствами и в 80-х гг. почти полностью отказаться от использования хромированных полимеров. В это же время были разработаны смесевые копировальные слои (см. рис. 3.3 ) и реверсивные слои (см. рис. 3.2 ).

    Совершенствование технологии изготовления формных пластин. Вначале очувствленные формные пластины изготавливались на полиграфических предприятиях по схеме: подготовка поверхности металлической подложки (поступающей со специализированных заводов), нанесение копировального раствора и сушка. Затем эти процессы стали осуществляться на специализированных предприятиях с использованием операционного механизированного оборудования, позже стали применять механизированные, а с 70-х гг. - автоматизированные поточные линии.

    За рассматриваемый период произошло некоторое изменение рецептур копировальных растворов, но основным компонентом, например, для позитивных слоев до сих пор является ОНХД. Значительно улучшены процессы подготовки поверхности пластин, изменилась структура монометаллических пластин. С 80-х гг. в структуру стал вводиться гидрофильный слой (см. рис. 5.3, г ), который исключает гидрофилизацию пробельных элементов в процессе изготовления форм, а с 90-х гг. - микрорельефный слой (см. рис. 5.3, е ), улучшающий процесс вакуумирования при экспонировании пластин. По экономическим соображениям толщина формных пластин уменьшилась до 0,15-0,35 мм. Широкое применение получили неметаллические подложки (например, бумажные и полимерные) для изготовления малотиражных форм (в том числе, и по упрощенной технологии).

    К середине второй половины прошлого столетия в формных процессах плоской офсетной печати применялись десятки вариантов аналоговых технологий, отличающихся друг от друга типом формных подложек и нанесенным на них светочувствительным слоем, микрогеометрией поверхности подложек, методом образования печатающих и пробельных элементов, рецептурой обрабатывающих растворов, технологическими режимами и т.д.

    Благодаря совершенствованию техники и технологии изготовления монометаллических форм контактным копированием и появлению цифровых формных процессов, в настоящее время количество применяемых технологических вариантов резко сократилось. В современном производстве применяются следующие разновидности форм, получаемых по аналоговой технологии:

      Монометаллические формы, изготавливаемые на алюминиевых пластинах позитивным или негативным копированием (они имеют наибольшее применение в мировой полиграфии);

      Формы проекционного экспонирования на полимерных или алюминиевых пластинах с серебросодержащими или электрофотографическими слоями (применение их ограничено).

    Формы, изготовленные копированием фотоформ. Монометаллические формы изготавливаются по следующей схеме:

      Контроль фотоформ и формных пластин (см. гл. 5);

      Выбор режимов экспонирования и обработки копий;

      Экспонирование позитивного копировального слоя в КС через позитивную фотоформу - рис. 6.1, а (или негативного слоя через негативную фотоформу);

      Обработка копии в процессоре: проявление, промывка в воде (рис. 6.1, б ), нанесение защитного покрытия (рис. 6.1, в ), сушка;

      Техническая корректура (при необходимости);

      Термообработка формы (при необходимости).

    Формы, изготовленные прямым фотографированием на материалах с серебросодержащим слоем. Существует несколько вариантов технологий, ориентированных на использование различных типов формных материалов. В качестве примера ниже рассматривается схема изготовления форм с применением формного материала на бумажной подложке.

    На подложке 2 (рис. 6.2, а ) имеются три слоя: нижний 3 , содержащий проявляющее вещество; средний 4 - галогенсеребряный слой; верхний 5 - приемный гидрофильный желатиновый слой, содержащий каталитические центры физического проявления. Технологический процесс изготовления форм включает следующие операции:

      Проекционное экспонирование формной пластины с РОМ, в результате которого в галогенсеребряном слое 4 образуется скрытое изображение (рис. 6.2, б );

      Обработка формной пластины активатором (рис. 6.2, в ), который обеспечивает активацию проявляющего вещества (из слоя 3 ) и последующее проявление серебра на экспонированных участках, а также растворение галогенида серебра с образованием серебряных комплексов, их диффузией и восстановлением на центрах физического проявления на неэкспонированных участках в слое 5 .

    Формы, изготовленные прямым электрофотографированием. Процесс их изготовления включает следующие операции:

      Получение на формной пластине электрофотографического изображения и его проявление-визуализация (рис. 6.3, а ); осуществляется, в принципе, по рассмотренной выше схеме (см. рис. 1.12, а - г );

      Термическое закрепление полученных олеофильных печатающих элементов 4 (рис. 6.3, б ). В результате оплавления смолы при температуре 150-190°С образуется механически прочная пленка;

      Химическое удаление ЭФС с пробельных элементов 5 (рис. 6.3, в ) в смеси, содержащей, например, метанол, глицерин, гликоль и силикат натрия;

      Нанесение на печатную форму защитного коллоида 6 (рис. 6.3, г ) и его сушка.

    В процессе печатания избирательное смачивание печатающих и пробельных элементов форм плоской печати основано на физико-химических закономерностях смачивания твердых поверхностей жидкостями. Смачивание или несмачивание твердой поверхности жидкостью определяется соотношением сил притяжения жидкости к твердому телу (силами адгезии) и сил взаимного притяжения между молекулами самой жидкости (силами когезии).

    Взаимодействие жидкости и твердого тела характеризуется работой адгезии формула" src="http://hi-edu.ru/e-books/xbook609/files/134.gif" border="0" align="absmiddle" alt=". Соотношение сил поверхностного натяжения на границе раздела фаз: твердое тело, жидкость, газ (воздух) определяет смачиваемость твердой поверхности (см. § 4.3.3). Очевидно, что чем сильнее взаимодействие жидкости и твердого тела, тем больше работа адгезии и тем сильнее (при прочих равных условиях) смачивание. Работа адгезии определяется из соотношения

    переход" href="part-005.htm#i858">§ 4.3.4) получаем

    формула" src="http://hi-edu.ru/e-books/xbook609/files/142.gif" border="0" align="absmiddle" alt=", которая численно равна работе изотермического разделения объема жидкости на равные части:

    формула" src="http://hi-edu.ru/e-books/xbook609/files/141.gif" border="0" align="absmiddle" alt="

    Полученное уравнение характеризует соотношение между краевым углом смачивания твердой поверхности и работой адгезии.

    В процессе печатания поверхность формы контактирует одновременно с двумя разными по полярности жидкостями. Для того, чтобы пробельные элементы смачивались полярной жидкостью - увлажняющим раствором, они должны быть гидрофильны. Если указатель" href="predmetnyi.htm#i1133"> гидрофобны - красковосприимчивы (опред-е">Монометаллические формы. Создание гидрофобных пленок может осуществляться, как при изготовлении формной пластины, так и в процессе изготовления печатной формы. Это определяется полярностью копировального слоя. Задачей экспонирования является сохранение или приобретение копировальным слоем гидрофобных свойств для того, чтобы на поверхности металла сформировались устойчивые печатающие элементы. Причем, последующая обработка копии не должна нарушать созданную гидрофобную адсорбционную пленку.

    На формах, изготовленных позитивным копированием , гидрофобной пленкой, служащей основой будущих печатающих элементов, является гидрофобный копировальный слой. Формирование этой пленки происходит в процессе изготовления формной пластины. Копировальный слой, сформированный на поверхности подложки за счет физической адсорбции, удерживается прочнее, если хорошо развита поверхность металла. Сохранение гидрофобных свойств слоя на печатающих элементах достигается защитой их от светового воздействия при экспонировании и минимизацией химического и механического воздействия на них при последующей обработке копии.

    На формах, изготовленных негативным копированием на пластинах с негативным копировальным слоем, печатающие элементы формируются в процессе экспонирования, когда участки гидрофобного копировального слоя, соответствующие будущим печатающим элементам, подвергаются воздействию светового излучения.

    Сущность формирования печатающих элементов на серебросодержащих формных пластинах заключается в следующем (см. рис. 6.2 ): на неэкспонированных участках слоя под действием растворителя галоге-нида серебра (тиосульфата натрия), происходит образование серебряных комплексов (серебрянотиосульфатного комплекса):

    выделение">5 наблюдается восстановление серебра на центрах физического проявления, представляющих собой коллоидные частицы из серебра, меди, селена, сульфидов серебра, кадмия или свинца, равномерно распределенных в желатиновом слое. Их размеры, соответствуют нанометрическому диапазону. Необходимая для процесса восстановления серебра щелочная среда (рН > 10) обеспечивается раствором активатора. В результате образуется, так называемое, «позитивное серебро»:

    пример">электрофотографическим слоем формируются на его поверхности в результате экспонирования, проявления (визуализации) и термообработки (см. рис. 6.3 ). В процессе термической обработки тонера образуются свободные радикалы, которые инициируют полимеризацию ЭФС, создавая прочную гидрофобную адсорбционную пленку на поверхности.

    Монометаллические формы. Формирование пробельных элементов связано с наличием на алюминиевой поверхности подложки гидрофильного слоя, представляющего собой пленку минеральных солей или окислов и гидрофильных полимеров. Гидрофильные пленки, необходимые для формирования пробельных элементов на алюминии, получаются на стадии изготовления формных пластин.

    Образование гидрофильной оксидной пленки происходит при анодной обработке поверхности алюминиевой основы (в растворах серной, ортофосфорной, щавелевой кислот или их смесей). В результате такой обработки на алюминии образуется мелкопористый гидрофильный слой, состоящий из гидратированной окиси с внедренными в нее примесями фосфатов и серы, что дополнительно повышает гидрофильность пленки. Области оксидных пленок, граничащие с металлом, состоят из чистых дегидратированных оксидов, в то время как внешний слой содержит анионные остатки и сильно гидратирован.

    По своему морфологическому строению оксидные пленки являются пористыми, так как помимо тонкого барьерного слоя они имеют также толстый (1-1,5 мкм) пористый слой из губчатого оксида алюминия, обладающего развитой поверхностью. Последующее наполнение оксидной пленки уменьшает ее пористость и дополнительно улучшает гидрофильность. Такая оксидная пленка алюминия обладает повышенным сродством к воде и хорошо смачивается увлажняющим раствором. Созданные на поверхности алюминия гидрофильные пленки на готовых печатных формах служат пробельными элементами. Наличие на поверхности формы гидрофильного коллоида способствует созданию плотного защитного адсорбционного слоя на поверхности пробельных элементов, который препятствует их разрушению.

    Формы, изготовленные прямым фотографированием. серебросодержащих пластинах с диффузионным переносом комплексов серебра (см. рис. 6.2 ), образуются следующим образом. В результате экспонирования, сопровождаемого образованием скрытого изображения в слое 4 , на экспонированных участках при химическом проявлении происходит восстановление галогенида серебра до металлического. В качестве проявляющих веществ могут использоваться, например, гидрохинон с фенидоном, поскольку указанные соединения выполняют функции восстановителей ионов серебра только в щелочной среде.

    Этот процесс может быть представлен реакцией (6.4), предполагая, что проявление осуществляется двухзарядным анионом гидрохинона:

    выделение">4 , верхнего гидрофильного желатинового слоя 5 .

    Пробельные элементы форм, изготовленных на электрофотографических пластинах формируются на гидрофильном слое, нанесенном на подложку, который обнажается на стадии удаления ЭФС (см. рис. 6.3, в ).

    Разновидности формных пластин. Монометаллические формные пластины, применяемые для копирования, можно классифицировать по:

    Тоновые (полутоновые) ступенчатые шкалы. Важной составляющей формного процесса является его контроль на различных стадиях, а также проверка готовых печатных форм. Для этих целей многие фирмы предлагают разнообразные тест-объекты и тестовые шкалы. Самыми простейшими шкалами являются тоновые (полутоновые) ступенчатые шкалы. Они содержат ряд тоновых полей (сегментов) в интервале оптических плотностей пропускания от 0,15 единиц оптической плотности, реже от 0,05 до 1,95-2 с шагом изменения оптической плотности переход" href="part-005.htm#i475">§ 4.1.1 .

    Тоновые ступенчатые шкалы, например сенситометрические ступенчатые шкалы (СПШ-К), разработанные специалистами ВНИИ полиграфии, служат для определения режимов экспонирования, а также оценки и сравнения светочувствительности формных пластин. Правильность выбора продолжительности экспонирования контролируется по номеру полностью проявленного поля шкалы. Число полностью проявленных полей регламентировано в зависимости от типа формных пластин, их репродукционно-графических и сенситометрических свойств.

    Растровая шкала РШ-Ф (ВНИИ полиграфии) относится к шкалам оперативного контроля формного процесса (рис. 6.6 ).

    Шкала состоит из 7 контрольных высоколиниатурных растровых полей, окруженных растровым фоном более низкой линиатуры (причем площади растровых элементов фона и полей шкалы одинаковы). Шкала содержит два дополнительных поля с относительной площадью элементов 2,6 и 4,3%..gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=", соответственно.

    Применение контрольных шкал такого типа основано на том, что решетки с различной пространственной частотой по-разному преобразуются в процессе копирования. В результате, одна низкочастотная решетка сохраняет постоянство оптических плотностей, а решетка более высокочастотная в зависимости от экспозиции становится или более темной, или более светлой. Подбором экспозиции можно выровнять результат, поэтому такую структуру используют для визуального контроля экспозиции с точки зрения точности воспроизведения растровых элементов.

    Если режимы изготовления печатной формы оптимальны, то поле 0 на растровом фоне будет визуально едва заметным. При нарушении режимов экспонирования поле 0 на растровом фоне резко выделяется. Шкала РШ-Ф при совпадении по светлоте одного из контрольных полей (выделение">4,5 ) дают информацию о качестве копирования мелких растровых элементов. Степень искажений изображений с линиатурой 40, 50 и 60 лин/см находят по специальной таблице, приложенной к шкале, по номеру поля, которое при визуальном рассмотрении шкалы сливается с фоном.

    Тест-объект UGRA Plate Control Wedge 1982 (UGRA-82). Это универсальный тест-объект для контроля формного процесса (рис. 6.7 ).

    Выделение">Тест-объект FOGRA Kontakt-Kontrollstreifen (FOGRA KKS). На тест-объекте FOGRA KKS (рис. 6.8 ) размещены три кольцевых контрольных элемента одинакового диаметра (25 мм), состоящие из тонких линий одинаковой ширины, пронумерованных от центра к периферии.

    Центральный фрагмент в форме круга на всех трех контрольных элементах выступает над плоскостью шкалы, вызывая намеренное нарушение плотного контакта (рис. 6.8, б ), причем центральный фрагмент первого элемента возвышается на 75±5мкм, второго - на 150±5мкм, а третьего - на 225±5мкм.

    Копирование тест-объекта FOGRA KKS на формные пластины позволяет оценить систему вакуумирования копировального станка и определить необходимую продолжительность создания вакуума, оценивая размер пятна вокруг центрального фрагмента. Величина пятна измеряется количеством линий на контрольных элементах, не воспроизведенных на копии. Допустимым является пятно на копии второго элемента, охватывающее область линий от 1 до 14-19, и третьего - до 20-25 линий.

    Растровый тест-объект RK-01 KALLE представляет собой объединенные в одном тест-объекте две растровые шкалы с линиатурами 60 и 120 лин/см, каждая из которых содержит по 12 полей с различной формула" src="http://hi-edu.ru/e-books/xbook609/files/160.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" - относительная площадь растровых элементов на тест-объекте.

    Подготовительные операции включают входной контроль формных пластин и фотоформ с целью проверки показателей качества на соответствие требованиям ТУ, и подготовку оборудования к работе.

    Подготовка экспонирующего оборудования зависит от его конструкции и степени автоматизации, т.е. возможности работы в автоматическом или ручном режиме, а также применения ламп быстрого запуска, наличия системы регулировки интенсивности излучения, дополнительной вспомогательной подсветки и штифтовой приводки, количества рабочих поверхностей станка и т.д. Повышение точности позиционирования фотоформ достигается применением устройств для перфорации под штифтовую приводку фотоформ и формных пластин.

    Для точной передачи элементов изображения в процессе экспонирования в копировальном станке должен обеспечиваться плотный прижим фотоформы к копировальному слою и максимально равномерная освещенность экспонируемой поверхности. Степень контакта между фотоформой и формной пластиной зависит от работы системы вакуумирования копировального станка, вида фотоформы, типа формной пластины и микрогеометрии ее поверхности. Условия вакуумирования в копировальном станке должны обеспечить отсутствие воздушных пузырей, приводящих к уменьшению или потере контакта. Перепады толщин на монтажной составной фотоформе или отсутствие каналов для удаления воздуха при использовании цельнопленочной фотоформы не должны стать причиной нарушения необходимого контакта между фотоформой и формной пластиной. Неравномерность освещенности (не превышающая 5-7%) контролируется с помощью тоновой шкалы, например, СПШ-К. Ее размещают в различных местах формной пластины и после копирования и проявления копии оценивают освещенность по зонам на экспонируемой поверхности.

    Подготовка обрабатывающего оборудования включает составление (или разбавление до нужной концентрации) проявителя и гуммирующего раствора, а также выбор и установку режимов обработки, т.е. температуры раствора и скорости прохождения экспонированной пластины через процессор для обработки копий.

    Выбор режимов экспонирования. Теоретическим вопросам экспонирования копировальных слоев и их свойствам уделено внимание в предыдущем разделе учебника (см. гл. 3 и 4). Поэтому в данной главе рассмотрены лишь некоторые технологические особенности. Под действием УФ-излучения происходит изменение окраски копировального слоя, что позволяет контролировать процесс экспонирования. Продолжительность экспонирования задается либо временем, либо количеством световой энергии, которую должен получить слой (в условных единицах, характеризующих дозу УФ-излучения при использовании новой металлогалогенной лампы и номинальном напряжении). В одном и том же КС экспозиция является величиной непостоянной и изменяется при снижении мощности лампы в результате выработки ее ресурса, колебаний в электросети и изменения других параметров. Поэтому современные КС оснащаются электронными системами управления осветителем, снабженным датчиком УФ-излучения. Эти системы служат для отключения металлогалoгенной лампы (или закрытия затвора осветительной системы) только после получения копировальным слоем заданной дозы излучения.

    В процессе экспонирования излучение от источника до копировального слоя проходит через среды с различными коэффициентами пропускания: воздух, стекло копировального станка, монтажную основу, фотоформу. Пропускание всех этих сред на длинах волн, соответствующих спектральной чувствительности позитивного копировального слоя (за исключением стекла), близко к 100%, поэтому излучение частично поглощается стеклом (рис. 6.9 ).

    Излучение также преломляется на границах раздела сред с различными показателями преломления. В связи с этим, в основном световом потоке, падающем на копировальный слой, присутствует некоторая доля рассеянного света. Дополнительно световой поток рассеивается и в самом слое. Вклад светорассеяние вносит также излучение, отраженное от шероховатой поверхности подложки (см. § 4.2.3). Из-за светорассеяния происходит частичное экспонирование копировального слоя на краях участков под непрозрачными элементами фотоформы..10.jpg" border="0" align="absmiddle" alt="

    Рис. 6.10..gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" - расширение штриха

    Происходит это как при негативном, так и позитивном копировании и сопровождается уменьшением размеров печатающих элементов при копировании на позитивный слой и их увеличением при копировании на негативный слой (рис. 6.10, I-II). Для снижения этих искажений экспозиция должна быть минимальной, но достаточной для прохождения необходимых преобразований в слое.

    Оптимальной является такая экспозиция, которая обеспечивает требуемые технологические свойства слоя и необходимые репродукционно-графические характеристики форм. Она зависит от чувствительности копировального слоя пластины, мощности осветителя, расстояния от осветителя до стекла копировального станка, характеристик фотоформы и определяется опытным путем при использовании тестовых шкал. Тоновые шкалы, необходимые для выбора экспозиции, должны использоваться при каждом копировании, позволяя контролировать величину экспозиции для каждой формной пластины.

    Выбор экспозиции по методике ISO для формных пластин с позитивным слоем основан на определении максимальной разрешающей способности с помощью микроштриховой миры, содержащей пары микроштрихов размером 4-70 мкм, выполненных в позитивном и негативном исполнении, т.е. штрихов и просветов (фрагмент 2 UGRA-82 - см. рис. 6.7 ). Оценивают результаты выбора экспозиции по воспроизведению растровых точек с выделение">1 и просветов 2 при различных экспозициях (рис. 6.11 ).

    Максимальная разрешающая способность пример">h одновременно воспроизведенных одинаковых штрихов и просветов. Для большинства формных пластин h лежит в пределах от 4 до 8 мкм..gif" border="0" align="absmiddle" alt=", изменения размеров растровых элементов не происходит, а интервал воспроизводимых градаций является наибольшим.

    Однако при выборе оптимальной экспозиции формула" src="http://hi-edu.ru/e-books/xbook609/files/170.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" берутся максимально допустимые градационные искажения растровых точек. Для этого к найденному значению h прибавляют 4 мкм (см. рис. 6..gif" border="0" align="absmiddle" alt=" выбирают ту, при которой воспроизводятся штрихи размером от 12 мкм.

    В условиях конкретного производства выбор экспозиции, основанный на использовании прецизионных тестовых шкал, может отличаться от режимов экспонирования для реальных фотоформ, при этом величина искажений растровых точек будет значительно больше.

    Проявляющие растворы должны:

      Обеспечивать необходимую избирательность и скорость проявления (см. § 4.3.1);

      Растворять микрорельефный слой, расположенный на поверхности формной пластины;

      Не нарушать гидрофильность пробельных и гидрофобность печатающих элементов;

      Обладать достаточной рабочей емкостью;

      Соответствовать экологическим нормам;

      Не оказывать коррозионного воздействия на подложку.

    Устойчивость печатающих элементов во многом определяет тиражестойкость печатных форм. В процессе печатания форма испытывает циклические нагрузки, трение в паре с офсетным цилиндром, накатными красочными и увлажняющими валиками, абразивное действие бумажной пыли и пигментов печатных красок. Износостойкость печатающих элементов зависит и от химической стойкости копировального слоя к увлажняющему раствору, а также его адгезии к поверхности подложки.

    Отличия в износостойкости копировальных слоев могут быть связаны с их составом, природой, соотношением компонентов и режимами обработки. Износостойкость позитивного на основе ОНХД и многих негативных слоев повышается при нагревании, что дает возможность увеличить тиражестойкость форм (в 2-3 раза) посредством их термообработки . Так, в копировальных слоях на основе ОНХД термообработка сопровождается химическими процессами, протекающими в слое: окислением смолы и ее взаимодействием с диазосоединением с образованием сшитых структур резольных составляющих слоя. При этом повышается износостойкость, химическая стойкость, увеличивается адгезия слоя к поверхности подложки и изменяется окраска слоя. Необходимая физико-механическая прочность слоя достигается при определенных режимах термообработки. Режимы термообработки форм зависят от типа формной пластины и устанавливаются в соответствии с конкретными рекомендациями фирм-изготовителей пластин по величине температуры и продолжительности обработки. Превышение температуры термообработки может привести к потере гидрофильных свойств пробельных элементов (тенению формы), вызвать коробление подложки и снижение адгезии слоя.

    Интервал температур, обеспечивающих наилучшие технологические свойства в большинстве случаев лежит в пределах от 160-180°С до 240-260°С, при времени обработки 3-10 мин. Проверка режимов термообработки осуществляется с помощью контрольных шкал, нагреваемых вместе с формой. Они представляют собой самоклеющиеся полоски-индикаторы, с высокой точностью указывающие температуру.

    Для защиты пробельных элементов от обезвоживания под действием высоких температур, а печатающих элементов - от растрескивания, перед термообработкой на форму, предварительно очищенную от гуммирующего слоя, наносят специальный защитный слой коллоида. Этот слой, обладающий повышенной кислотностью, после проведения термообработки и в случае длительного хранения формы удаляют водой или специальным раствором, а на поверхность наносят обычное защитное покрытие (см. § 6.3.4).

    Для термической обработки используют шкафы (печи), поточные линии или секции, входящие в состав модульных автоматизированных линий для последовательного выполнения всех операций обработки печатных форм. Время термообработки на поточной линии несколько меньше, чем в термошкафу. Контроль термообработки проводится косвенными способами с помощью денситометра или визуально по изменению цвета копировального слоя.

    Факторы, вызывающие возникновение дефектов печатных форм. Их условно можно разделить на технологические , связанные с применяемыми материалами и режимами выполнения операций, и технические - обусловленные в основном работой оборудования и климатическими условиями в формном отделении.

    Возможными дефектами печатных форм являются:

      Искажение или полное отсутствие элементов изображения на форме по сравнению с фотоформой;

      Восприятие краски пробельными элементами и невосприятие краски печатающими элементами в процессе печатания;

      Нарушение адгезии слоя к подложке, приводящее к снижению тиражестойкости печатной формы.

    Дефекты, возникающие на печатных формах из-за режимов выполнения основных технологических операций, сводятся к недокопировке , заключающейся в недостаточном экспонировании или недопроявлении копии, перекопировке , вызванной, наоборот, избытке экспозиции или перепроявлением, и непрокопировке , обусловленной попаданием света под непрозрачные элементы фотоформы.

    При недокопировке изображение на форме, изготовленной позитивным копированием, получается менее контрастным, чем на диапозитиве и содержит лишние печатающие элементы, которые остались на форме из-за неполного удаления копировального слоя пробельных элементов. Такая форма тенит в процессе печатания. Перекопировка дает, наоборот, более контрастное изображение на форме, чем на фотоформе и характеризуется отсутствием мелких деталей изображения: тонких штриховых элементов и растровых точек в высоких светах.

    Возникновение дефектов на печатной форме может быть вызвано наличием зазора между фотоформой и формной пластиной. Чем больше зазор, тем больше доля рассеянного света, приводящая к изменению размеров элементов. Причинами возникновения зазора могут быть износ резиновых уплотнений коврика копировального станка, ухудшение работы его вакуумирующей системы, наличие пыли на поверхности фотоформы, в том числе, из-за низкой влажности воздуха в копировальном отделении и др.

    Снижение тиражестойкости офсетной формы, вызванное невосприятием краски печатающими элементами, может быть следствием нарушений условий хранения позитивной формной пластины или готовой формы, приведших к потере гидрофобных свойств печатающими элементами формы. Исчезновение мелких элементов изображения на печатной форме возникает из-за случайного воздействия излучения ламп дневного света (подсвечивание копировального слоя).

    1. Изготовление форм плоской офсетной печати

    2. Изготовление форм высокой печати на основе фотополимерных композиций

    3. Разновидности печатных форм глубокой печати

    4. Изготовление форм для специальных видов печати

    5. Прямые способы изготовления печатных форм

    6. Влияние способов изготовления печатных форм на требования к обработке информации

    Список литературы


    1. Изготовление форм плоской офсетной печати

    На печатной форме плоской офсетной печати (рис. 1) печатающие и пробельные элементы находятся практически в одной плоскости. Способ изготовления печатных форм, осуществляемый с использованием позитивных фотоформ и с применением предназначенных для такого способа позитивно работающих формных пластин, называется способом позитивного копирования. При этом копировальный слой формных пластин обладает такими свойствами, что в процессе проявления он удаляется с засвеченных участков, и в итоге эти участки печатной формы становятся невосприимчивыми к печатной краске.

    Соответственно, название способ негативного копирования появилось в результате того, что в ходе изготовления печатной формы используются негативные фотоформы. При этом применяются формные пластины с негативным копировальным слоем. В ходе обработки копировальный слой удаляется со всех участков, которые не были достаточно засвечены. Воздействие экспонирующего излучения происходит на прозрачных участках фотоформы, соответствующих печатным элементам, воспринимающим печатную краску.

    Перед тем, как производить экспонирование или копирование формных пластин, каждая из которых предназначена для одного из однокрасочных изображений, на пластинах пробиваются отверстия приводки, что обеспечивает точное размещение фотоформ/макета печатного листа. Очень часто на печатной форме пробиваются приводочные отверстия предназначенные для ее правильной установки в печатной машине. Эти отверстия могут быть сделаны уже после проявления экспонированной формной пластины. В традиционном фоторепродукционном процессе форма плоской печати может быть изготовлена экспонированием в проекционной или контактной системе.

    Проекционные экспонирующие системы (работающие на отражение или на пропускание) используются при выпуске черно-белой книжной и газетной продукции (так же, как и в трафаретной печати), т.е. продукции, к которой не предъявляются высокие требования в отношении качества. Проекционная растровая система работает по принципу эпидиаскопа (для оригиналов, выполненных на непрозрачной основе) или как диапроектор (для оригиналов, выполненных на прозрачной основе). Макет, фотоформу полосы создают в виде клеевого монтажа на бумажной или прозрачной основе (рис. 2). Фотоформа сверстанной полосы проецируется на формную пластину. В результате в процессе экспонирования на печатной форме записывается последовательность полос, соответствующая монтажному листу.

    Рис. 2. Микрофотография поверхности печатной формы плоской офсетной печати

    При работе на копировальномножительной машине (stop&045;and&045;repeat – остановиться и повторить) (рис. 3) можно обходиться даже без монтажного листа. В этом устройстве контактным методом копируются фотоформы полос издания, установленные в специальной кассете. При экспонировании в контактнокопировальной раме с вакуумным прижимом (рис. 4) необходимо обеспечить контакт полноформатного монтажа, выполненного на прозрачной основе, с формной пластиной. Монтажная фотоформа фиксируется на формной пластине посредством точного размещения по приводочным штифтам и укладывается в контактнокопировальную раму. Монтаж и формная пластина оказываются между гибким резиновым полотном и стеклянной пластиной. Воздух из внутреннего пространства "сэндвича" отсасывается и, таким образом, создается давление воздуха между полотном и стеклянной пластиной, что обеспечивает удовлетворительный контакт между копируемым монтажом и пластиной. Затем производится экспонирование от источника УФ излучения.

    Фотохимически активный слой формной пластины реагирует на поток света, падающий от источника излучения. Для получения хороших результатов копирования на формную пластину должна воздействовать минимально допустимая энергия, приходящаяся на единицу площади. Как и при изготовлении фотоформ, оптимальная экспозиция зависит от источника излучения и от свойств формного материала.

    Рис. 3. Система проекционного копирования (технология на пропускание) для изготовления печатных форм плоской офсетной и трафаретной печати (Proditec Projectionssysteme)

    Рис. 4. Копировально-множительная машина (стоп – стартового типа)

    Излучение чаще всего генерируется посредством галогенной лампы накаливания. Пучок излучения состоит из параллельно направленной и переменной диффузной составляющих. Диффузнорассеянная часть потока может быть значительно увеличена посредством применения рассеивающей матовой пленки. Это необходимо при позитивном копировании для того, чтобы исключить запись на печатной форме пылинок и обрезных краев фотопленки. Нежелательным эффектом является исчезновение мелких деталей в процессе экспонирования, когда при излишне большой экспозиции излучение попадает под темные участки фотоформы.

    Рис. 6. Контактно-копировальная рама с устанавливаемым матовым листом (Sack)

    Проявление (в растворах/химическое) в простейшем случае выполняется вручную, однако предпочтительнее его вести в кювете или в проявочной машине. Перед тем как наносится защитный слой, пластину проверяют на наличие ошибок и, если необходимо, корректируется вручную. При так называемой "минус корректуре" нежелательные печатающие элементы удаляются корректурной жидкостью, ручкой или кистью. "Плюс&045;корректура" является более сложной. Могут быть внесены только очень незначительные изменения, такие, как заполнение краской дефектов или небольших участков на плашке при выворотке. Для этого на участках, требующих корректуры, сначала должен быть смыт уже имеющийся там защитный слой, а затем на эти места наносится корректурный лак.

    Стадии корректуры и создания защитного слоя, а также стадия термообработки составляют область процессов отделки печатных форм. В процессе нанесения защитного слоя (называемого "гуммированием") пластина покрывается тонким слоем гуммиарабика или раствора аналогичного химического состава, которые придают пробельным элементам устойчивые гидрофильные свойства. Твердость копировального слоя повышается в процессе термообработки, чем достигается большая тиражестойкость печатной формы. При выборе оптимальной экспозиции должны быть учтены следующие требования:

    · интервал оптических плотностей, типичный для данного печатного процесса, должен быть воспроизведен на печатной форме;

    · изменения в передаче градаций на стадии перехода от фотоформы к печатной форме должны находиться в узком диапазоне допусков.

    Управление процессом копирования позитивных печатных форм осуществляется посредством анализа микроштрихового поля, содержащегося в контрольном тест объекте. Группа микроштрихов наименьших размеров, воспроизводимых на печатной форме, обычно находится в диапазоне 12 мкм или 15 мкм (при печати бесконечных формуляров – 20 мкм). На рис. 5 приведен соответствующий пример . Для контроля процесса негативного копирования дополнительно с микроштриховыми полями используется полутоновый клин. Более подробно спецификации и/или стандарты для оценки печатной формы представлены ниже:

    · стандартизация способа офсетной печати по BVD/FOGRA (13.2.3), ;

    · стандартизация многокрасочной газетной печати ;

    · стандартизация печати бесконечных формуляров (13.2.3), ;

    · стандарт DIN 16620, часть 2 или соответствующий ему стандарт ISO;

    · ISO 12218 - общий стандарт офсетной печати, .

    Оценка растровых величин на печатной форме не является необходимой, так как она может быть выполнена по копировальной шкале FOGRA на основе считывания микроштриховых полей (рис. 5). На обычных формных материалах с диазотипными копировальными слоями воспроизведение контрольной шкалы оценивается с помощью микроскопических измерений. Однако этот метод не всегда применим при использовании цифровых технологий изготовления печатных форм "компьютер – печатная форма".

    Вследствие небольшого светорассеяния и попадания экспонирующего излучения под непрозрачные участки фотоформы при позитивном копировании обнаруживается уменьшение размеров растровых точек с переходом от фотоформы к печатной форме и, наоборот, при негативном копировании происходит увеличение размеров растровых точек. В средних тонах размеры растровых точек отклоняются примерно на 3%. Разница обычно учитывается на стадии доформных процессов. Данные отклонения внесены в стандарты на процессы плоской офсетной печати (ISO 12647 часть 2; раздел 14.4) и газетной печати (ISO 12647, часть 3; раздел 14.4).

    Управление процессом экспонирования при изготовлении печатных форм зависит от характеристик фотоформ и осуществляется с помощью так называемого "интегратора излучения" (известного как "счетчик тактов"). Это устройство автоматически рассчитывает экспозицию как произведение действующей интенсивности излучения на время экспонирования. Засветка прекращается, как только достигается требуемый уровень экспозиции.

    Рис. 5. Тест-объект для контроля процесса позитивного или негативного копирования в производстве печатных форм плоской офсетной печати (UGRA/FOGRA)

    Печатные формы основных видов печати можно изготавливать следующими способами:

    1) фотомеханическим;

    2) электронно-механическим гравированием;

    3) диффузионным переносом;

    4) электрофотографическим.

    Фотомеханический способ (ФМС, рис. 5.3) включает фоторепродукционный процесс, где изготавливаются фотоформы, копировальный, в результате которого получается копия на формном материале, и формный процесс, где осуществляется химико-фотографическая обработка копии.

    Рис. 5.3. Схема воспроизведения информации фотомеханическим способом

    Сущность электронно-гравировального способа состоит в том, что световой поток, отраженный от оригинала, преобразуется в электрический сигнал, который после соответствующего усиления поступает на режущую систему, непосредственно создающую печатающие и пробельные элементы. Чем светлее участок оригинала, тем большее количество света отражается и тем сильнее электрический сигнал на выходе.

    Способ диффузионного переноса используется при изготовлении печатных форм по технологии «Компьютер – печатная форма», которая позволяет производить запись изображения непосредственно из цифровых данных посредством лазерного излучения. Формная пластина для данного способа является многослойной. Она состоит из подложки (лавсана или алюминия), на которую нанесены 2 слоя: верхний слой является светочувствительным, а нижний (приемный слой) содержит частицы серебра (сернистого или металлического). Такие формы называют серебросодержащими. При записи экспонированию подвергаются будущие пробельные участки. Полученное скрытое изображение проявляют в контакте с нижним слоем. Проявитель растворяет микрокристаллы галоида серебра на неэкспонированных участках верхнего слоя, и они переходят в приемный слой, где восстанавливаются до металлического серебра на частицах серебра нижнего слоя. После фиксирования и вымывания серебряной маски получается позитивное изображение.

    Электрофотография - способ формирования красочного изображения на печатной форме с использованием носителей, электрические свойства которых изменяются под действием излучения оптического диапазона. В электрофотографии, скрытое изображение на носителе получается при использовании определенных фотополупропроводниковых материалов. Фотополупроводники обладают в темноте хорошими диэлектрическими свойствами, т. е. не проводят электрический ток. Они удерживают некоторое время заряд, полученный при электризации их каким-либо источником тока, но под действием света - деполяризуются (электрическое сопротивление фотопроводника резко падает и он приобретает проводящие свойства) (с них стекает заряд) прямо пропорционально интенсивности светового потока. Электрографические способы можно разделить на две группы: прямые, в которых окончательное изображение и текст формируются непосредственно на фотополупроводниковом электрографическом слое (ЭФС), и косвенные, где они переносятся с ЭФС на другой материал. При этом запись информации может быть форматной (в специализированных аппаратах) или поэлементной (в сканерах, лазерных принтерах).



    К наиболее важным показателям печатным форм относят тиражестойкость, разрешающую способность и градационную передачу изображений. Тиражестойкость форм характеризуется максимальным количеством оттисков, которые можно получить с печатной формы без значительного ухудшения их качества. Разрешающая способность форм характеризует возможность воспроизведения на печатной форме мелких деталей изображения. Она оценивается предельным числом штрихов, раздельно зафиксированных на печатной форме, и выражается их количеством, приходящимся на 1 мм. Градационная передача изображений - показатель, характеризующий качество воспроизведения на печатных формах тоновых или растровых изображений. На практике она может контролироваться визуально по контрольным шкалам, находящимся на форме, или оцениваться графической зависимостью воспроизведения растрового изображения фотоформы или РОМ на печатной форме.

    Допечатные процессы заканчиваются изготовлением печатных форм. Схема на рис. 5.1 иллюстрирует основные операции, предшествующие изготовлению печатных форм по аналоговой технологии. Как нам уже известно, в цифровой форме текстовая и изобразительная информация объединяются при верстке полос, затем создаются спуски полос в электронном виде, которые поступают в растровый процессор, и после соответствующей обработки в процессе записи информации на фотографический материал цифровой поток данных преобразуется в аналоговую форму.

    После обработки экспонированного материала получается полноформатная фотоформа, содержащая спуски полос, которая в дальнейшем и используется для изготовления печатной формы. Таким образом, при изготовлении печатных форм по аналоговой технологии CtF (от англ. - Computer to Film: компьютер - фотографический материал) необходимо использовать фотоформы.

    В настоящее время аналоговые технологии применяются в производстве печатных форм различных видов печати; плоской офсетной, высокой (типографской и флексографской), трафаретной и т.д. Формы глубокой печати изготавливаются только с применением цифровой технологии. Для изготовления печатных форм необходимы формные материалы (часто их называют формными пластинами).

    Формные материалы состоят из основы (подложки), на которую нанесен светочувствительный слой, его обычно называют копировальным. В качестве основы применяют металлические пластины (алюминий, сталь), полимерные пленки. Толщина основы зависит от материала и от вида печатной формы и может составлять 0,15-0,8 мм. Светочувствительный слой представляет собой тонкую сухую пленку. Для форм плоской офсетной печати ее толщина составляет 0,002-0,004 мм; для других печатных форм эта толщина выше и может достигать, например, для форм высокой печати - 6,5 мм и более. Перед нанесением копировального слоя основа обрабатывается для улучшения ее свойств. Обработка зависит от типа материала, и в дальнейшем вид обработки будет указан при рассмотрении соответствующих видов технологии (см. § 5.2).

    В состав копировального слоя входит пленкообразующее вещество (полимер), которое не обладает светочувствительностью, но образует прочную эластичную пленку и определяет такие свойства слоя как механическая прочность, химическая устойчивость и т.д. В качестве подробного вещества часто используется поливиниловый спирт (ПВС), его производные, например, ПВА, некоторые другие полимеры.

    Важными составляющими копировального слоя являются светочувствительные вещества; они обусловливают изменение его растворимости в результате действия света. В зависимости от природы таких веществ можно выделить несколько типов копировальных слоев, сведения о которых приводятся ниже. Кроме того, в копировальные слои вводятся различные добавки, улучшающие их свойства, например, увеличивающие механическую прочность, устойчивость к действию обрабатывающих растворов. Для визуального контроля равномерности нанесения слоев в них добавляют красители. Красители изменяют свой цвет в результате действия УФ-излучения, поэтому они позволяют контролировать и результат экспонирования, В некоторых случаях в копировальные слои вводят сенсибилизаторы - вещества, которые делают копировальный слой чувствительным к определенным спектральным излучениям, например, к видимым, и повышают его общую светочувствительность, уменьшая необходимое время экспонирования.

    При изготовлении печатных форм по аналоговой технологии копировальный слой засвечивают через фотоформу. В результате, в зависимости от природы копировального слоя, он под действием УФ-излучения либо приобретает растворимость, либо ее теряет. После проявления - удаления растворимого слоя на печатной форме остаются участки, покрытые копировальным слоем, и участки, свободные от него. Копировальный слой, оставшийся на формной пластине, как правило, образует печатающие элементы, иногда - пробельные.

    В зависимости от того, приобретает или теряет копировальный слой растворимость, различают негативные и позитивные копировальные слои. На рис. 5.2 , а приведена схема экспонирования негативного копировального слоя.

    Излучение, прошедшее через прозрачные участки фотоформы 3, воздействует на копировальный слой 2, который в результате теряет растворимость, и после растворения участков, не подвергшихся воздействию, получается копия (рис. 5.2, b); на ней оставшийся слой соответствует прозрачным участкам фотоформы. Позитивный копировальный слой под действием света приобретает растворимость (рис. 5.3 , a ), поэтому после проявления получается копия, на которой слой остается на участках, соответствующих почернениям фотоформы (рис. 5.3, b).

    Пластины, покрытые светочувствительным слоем, могут использоваться и для изготовления печатных форм по цифровым технологиям (CtP), но в этом случае происходит поэлементное экспонирование слоя лазерным излучением (см. гл. 6).

    В настоящее время для изготовления печатных форм используются следующие типы копировальных слоев:

    • на основе ОНХД (ортонафтохинондиазиды);
    • на основе ФПК (фотополимеризующиеся композиции);
    • синтетические полимеры, очувствленные диазосмолами;
    • синтетические полимеры, очувствленные солями хромовой кислоты.

    Слои на основе ОНХД под действием УФ-излучения разрушаются и приобретают растворимость в слабо щелочных растворах, В результате, после удаления разрушенных участков копировальный слой остается там, где свет не действовал. Следовательно, это позитивные слои. Они используются в основном для изготовления печатных форм плоской офсетной печати. Гидрофобный копировальный слой тогда является носителем печатающих элементов.

    Слои на основе ФПК под действием УФ-излучения теряют растворимость, так как в них происходит полимеризация. После удаления растворимых участков также образуется печатная форма. Это негативные слои. Если используются толстые слои ФПК, то после проявления, которое называют вымыванием, образуется форма высокой печати, при применении тонких слоев - печатная форма плоской печати, гидрофобный копировальный слой в обоих случаях является носителем печатающих элементов.

    Синтетические полимеры, очувствленные диазосмолами или солями хромовой кислоты. И диазосмолы, и соли хромовой кислоты под действием УФ-излучений образуют вещества, обладающие дубящим действием. Поэтому такие слои в результате экспонирования теряют растворимость под действием света. В настоящее время их применяют для изготовления форм трафаретной печати, тогда копировальный слой служит носителем пробельных элементов. Эти слои также относятся к негативным, потому что под действием света они теряют растворимость, и после проявления остаются на тех участках, на которые подействовал свет.

    Тип фотоформы (негатив или диапозитив), применяемой для изготовления печатных форм, зависит от природы копировального слоя и от того, носителем печатающих или пробельных элементов должен быть копировальный слой. Особенности формных материалов для изготовления различных видов печатных форм будут рассмотрены в § 5.2 .

    Требования к свойствам копировальных слоев зависят от их назначения. Вследствие того, что копировальные слои являются носителями печатающих или пробельных элементов, важным требованием, предъявляемым к ним, является прочность сцепления с основой (адгезия к основе), а также механическая прочность. Чем выше адгезия к основе и механическая прочность слоя, тем выше тиражестойкость печатной формы. От копировальных слоев требуется и высокая избирательность проявления - полное отсутствие растворимости тех участков, которые должны остаться на основе, и в то же время, полное удаление растворимых участков. Избирательность проявления способствует надежному разделению поверхности формного материала на печатающие и пробельные элементы.

    Важным требованием является высокая разрешающая способность, достаточная для надежного воспроизведения мелких элементов изображения на оттиске, таких как 3-5% растровые точки, соединительные штрихи шрифтов и т.д.

    Оборудование для изготовления печатных форм. Экспонирование копировального слоя за фотоформой происходит в копировальных станках (рамах). Для того чтобы размеры мелких элементов изображения воспроизводились на копии без искажения, необходимо обеспечить в этих устройствах хороший контакт фотоформы и копировального слоя.

    Такой контакт достигается вакуумным прижимом (рис. 5.4 ). На резиновый коврик 2 копировальной рамы 1 помещают копировальным слоем вверх формную пластину 3, сверху кладут эмульсионным слоем вниз фотоформу 4 и все закрывают рамой с прозрачным бесцветным стеклом 5. За счет вакуума, который образуется при удалении воздуха из рамы (показано стрелкой) коврик 2 раздувается, благодаря чему и достигается хороший контакт между фотоформой и копировальным слоем. В соответствии со спектральной чувствительностью копировальных слоев в качестве источника света 6 используются лампы, создающие свет, богатый ультрафиолетовым излучением. Современные копировальные станки часто снабжаются шторками, защищающими копировщика от УФ-излучений, пультами управления, позволяющими программировать режимы экспонирования. При контактном копировании наилучшие результаты могут быть получены при использовании точечных источников света. Однако, в связи с невысокой общей светочувствительностью слоев, для их экспонирования применяются обычно протяженные источники света.

    Копировальные рамы для экспонирования слоев на основе ФПК отличаются тем, что вместо покровного стекла в них используется прозрачная полимерная пленка, пропускающая УФ-излучения, так как эти слои в большей степени, чем остальные, чувствительны к УФ-зоне спектра.

    Обработка экспонированного материала производится в специальных устройствах - процессорах, являющихся поточными линиями и при изготовлении печатных форм осуществляющих не только проявление, но и другие необходимые операции, например, промывку, сушку пластины. Программу обработки экспонированного формного материала можно задавать путем нажатия соответствующих клавиш на рабочей панели машины. Выбранная программа позволяет осуществлять контроль количества и температуры проявителя, температуры сушки, подачи регенерирующих добавок, сохраняющих рабочие свойства растворов. Время проявления можно регулировать, изменяя скорость проявочного валика и скорость прохождения формной пластины. Процессоры для обработки экспонированных фотополимеризующихся материалов имеют щетки для механического удаления растворимых участков копировального слоя.

    В процессе печатания важно правильно расположить оттиск на бумаге или другом материале. Этот процесс называется приводкой. Особое значение приобретает приводка при многокрасочной печати, так как тогда необходимо обеспечить точное совмещение изображений, полученных с цветоделенных форм, В настоящее время процесс ускоряется благодаря применению приводки по штифтам. Возможность проведения такой приводки создается при выполнении допечатных процессов. Для этого используются перфорационные установки, с помощью которых на фотоформах и формных пластинах в строго определенных местах пробиваются штифтовые отверстия той или иной конфигурации. Перед экспонированием фотоформы и пластины надеваются этими отверстиями на штифты специальной линейки, которой комплектуются перфораторы, и после этого происходит процесс копирования. На такие же штифты надевается и готовая форма в печатной машине. Как мы увидим далее, перфорационные установки необходимо использовать и при цифровых формных процессах (см. гл. 6.2).

    Изготовление печатных форм на позитивных копировальных слоях. В России и в европейских странах в настоящее время в большинстве случаев для изготовления офсетных форм по аналоговой технологии используются позитивные копировальные слои. Применяют алюминиевые пластины толщиной 0,15-0,3 мм, поверхность которых подвергнута обработке, обеспечивающей хорошую адгезию копировального слоя к основе и повышающей гидрофильность алюминия (рис. 5.5 ).

    Пластина покрыта микронеровностями 1, (рис. 5.5, a), благодаря которым площадь ее поверхности увеличивается во много раз. Кроме того, на ней образована прочная оксидная пленка 2 (рис. 5.5, b). И, наконец, на поверхности алюминия создан прочный гидрофильный слой 3. На подготовленную таким образом подложку нанесена пленка 4 копировального слоя на основе ОНХД толщиной 1-3 мкм. В большинстве случаев на копировальный слой, кроме того, наносится специальное микрорельефное покрытие 5, назначение которого состоит в улучшении контакта слоя с фотоформой. Благодаря такому покрытию при экспонировании создаются каналы для удаления воздуха. При проявлении копии оно удаляется. Слой на основе ОНХД - позитивный.

    Задача процесса изготовления печатных форм плоской офсетной печати состоит в том, чтобы на печатающих элементах создать гидрофобные пленки, а на пробельных - гидрофильные. Процесс изготовления печатных форм содержит всего две операции - экспонирование и проявление.

    При экспонировании копировальный слой 3 засвечивают в копировальной раме за монтажом диапозитивов 4 (рис. 5.6 , а ). Свет действует на будущие пробельные элементы формы. В результате, в этих местах 6 (рис. 5.6, b) слой разрушается и приобретает способность растворяться в слабых щелочных растворах. Через непрозрачные участки диапозитива свет не проходит, поэтому за ними слой остается без изменения (образуются печатающие элементы). На рис. 5.6, b показана пластина после экспонирования - копия. Она содержит участки слоя 6, ставшие растворимыми, и нерастворимые будущие печатающие элементы 3. В слое имеется краситель, изменяющий свой цвет под действием УФ-излучения, и образующий на копировальном слое хорошо зрительно различимую копию изображения, содержащегося на диапозитиве, что помогает осуществлять визуальный контроль результата экспонирования.

    После экспонирования копию проявляют в слабо щелочном растворе (рис. 5.6, c), в результате чего удаляется разрушенный копировальный слой. Как было сказано ранее, алюминиевая пластина перед нанесением копировального слоя была обработана таким образом, что после проявления пробельные элементы оказываются гидрофильными и не нуждаются в дальнейшей обработке. Копировальный слой, оставшийся на печатающих участках, обладает гидрофобными свойствами. На готовой форме печатающие элементы состоят из гидрофобного копировального слоя (рис, 5.6, с, 3), а пробельные - из гидрофильного (рис. 5.6, с, 2), который был создан на поверхности алюминия. После промывки, для того чтобы форма плоской офсетной печати не портилась при хранении, на нее наносится защитный коллоид, например декстрин или другие полимеры, относящиеся к полисахаридам. Защитный слой препятствует окислению печатающих и пробельных элементов формы, усиливает эффект гидрофилизации пробельных элементов. Если не нанести защитный слой, через сутки гидрофильные элементы начинают терять свои свойства, и в дальнейшем станут гидрофобными. Защитное покрытие легко удаляется водой перед печатанием. Нанесение защитного покрытия называется гуммированием.

    Для повышения тиражестойкости печатных форм плоской офсетной печати применяется термообработка. С формы смывается гуммирующий слой, затем наносят специальный защитный слой коллоида, обладающий повышенной кислотностью и защищающий пробельные и печатающие элементы от воздействия высоких температур. После этого форму нагревают в течение нескольких минут в специальном устройстве до температуры 240-260°С. После проведения термообработки защитный слой смывают водой, а форму гуммируют. Благодаря термообработке увеличивается прочность печатающих элементов.

    Изготовление печатных форм на негативных копировальных слоях. В США и некоторых других странах получили распространение формные материалы с негативными копировальными слоями. Они состоят из алюминиевой подложки, подготовленной таким же образом, как и у материалов позитивного копирования (см. рис. 5.5), но в качестве копировальных в этом случае используются слои на основе ФПК. Схема изготовления печатной формы негативным копированием показана на рис. 5.7 .

    Под действием УФ-излучения на будущих печатных участках копировальный слой полимеризуется и теряет растворимость (рис. 5.7, а). Копия (пластина после экспонирования) - рис. 5.7, b. Вертикальной штриховкой обозначены участки слоя, потерявшие растворимость. На готовой форме, как и в случае позитивного копирования, печатающие элементы состоят из гидрофобного копировального слоя (рис. 5.7, с, 3), а пробельные находятся на гидрофильной пленке (рис. 5.7, с, 2), которая была создана на поверхности алюминия. В дальнейшем форму также покрывают защитным коллоидом. При применении электронных монтажей и ФВУ изготовление негативных монтажей не вызывает никаких затруднений.

    Для изготовления форм высокой и флексографской печати используются светочувствительные материалы на основе ФПК.

    Для производства форм высокой печати используются формные пластины (рис. 5.8 , а ), состоящие из основы (подложки) 4, на которую нанесен копировальный слой 2. Подложка может быть изготовлена из стали или из полимерной пленки (например, из полиэфира). ФПК прикрепляется к основе с помощью адгезионного слоя 3. Часто адгезионный слой играет роль противоореольного; его задача - поглощать отраженные от основы излучения, которые в противном случае, будут искажать размеры мелких штрихов изображения. На светочувствительном слое находится защитная пленка 1, которую удаляют перед экспонированием. Защитная пленка в процессе хранения формного материала предохраняет светочувствительный слой от воздействия кислорода, снижающего светочувствительность, а также защищает слой от механических повреждений. Как сказано ранее, слой ФПК чувствителен к УФ-излучениям с длиной волны 360-380 нм. В результате действия таких излучений происходит полимеризация слоя, и он теряет растворимость в некоторых растворах. В настоящее время наибольшее применение получили водовымывные ФПК. Технологический процесс изготовления печатных форм типографской печати начинают с основного экспонирования.

    Основное экспонирование производится в копировальной раме за негативом или цельнопленочным монтажом негативов (рис. 5.8, b, 5). Фотоформа должна иметь матовую поверхность и высокий интервал оптических плотностей:

    выделение">флексографских форм (рис. 5.9 , а ) состоят из тонкой полиэфирной подложки 1, на которую нанесен слой ФПК 2, сверху он, как и слой для типографских форм защищен пленкой 4, предохраняющей от механических повреждений и воздействия кислорода.

    Перед изготовлением формы пленку удаляют. На светочувствительном слое под защитной пленкой находится тонкий (несколько микрометров) покровный слой 3, позволяющий улучшить контакт между фотоформой и светочувствительным слоем. Сначала слой засвечивают снизу (рис. 5.9, b). Это делается для равномерной полимеризации со стороны основы. Затем на слой действуют УФ-излучением через негатив (рис, 5.9, с, 5). В результате происходит полимеризация копировального слоя на печатающих участках. Следующая операция - вымывание, в процессе которого удаляется незаполимеризованный слой (рис. 5.9, d) и образуются пробельные элементы формы, расположенные ниже печатающих, которые в свою очередь находятся в одной плоскости. Готовую форму высушивают и подвергают финишингу - для устранения липкости дополнительно засвечивают УФ-излучением с меньшей длиной волны, чем при основном экспонировании (рис. 5.9, е). Для повышения тиражестойкости выполняют дополнительное экспонирование (рис. 5.9, f) тем же излучением, что применялось и при основном.

    Напомним, что печатная форма трафаретной печати имеет строение, показанное на рис. 1.7, а. На пластмассовую раму натянута сетка с очень мелкими ячейками. Эта сетка является основой, на которую нанесен защитный слой, предохраняющий пробельные участки от воздействия печатной краски. Там, где нет защитного слоя, краска проходит через сеточную основу и попадает на запечатываемую поверхность. Таким образом, сетка является и носителем печатающих элементов. Чем толще защитный слой на форме, тем толще красочный слой, который получится на оттиске.

    Изготовление печатных форм трафаретной печати (рис. 5.10 ) начинается с того, что с помощью специального устройства на раму натягивают сетку, контролируя величину и равномерность натяжения. Сетку обезжиривают для улучшения адгезии (сцепления с основой) копировального слоя, и наносят на нее жидкий копировальный слой, состоящий из полимера (поливинилового спирта), очувствленного дихроматом аммония. Для получения необходимой толщины слой наносят и высушивают несколько раз. Хотя копировальный слой негативный, его экспонирование осуществляют за диапозитивом, так как на форме слой является носителем пробельных элементов. Под действием света копировальный слой на участках, соответствующих будущим пробельным элементам, задубливается и теряет растворимость, В результате проявления в воде копировальный слой с печатающих участков удаляется. Там остается сетка, через которую при печатании краска передается на запечатываемый материал. Пробельные элементы формы не пропускают краску, так как на них находится копировальный слой. После печатания тиража с сетки удаляют копировальный слой, и ее можно использовать для изготовления новой печатной формы.

    На рис. 5.10, а изображена сетка 1 с нанесенным на нее копировальным слоем 2, рама не показана. На копировальный слой помещают диапозитив 3 (рис. 5.10, b), через который в копировальной раме экспонируют УФ-излучением копировальный слой, который на пробельных участках теряет растворимость. На рисунке это показано изменением характера штриховки. Затем копию проявляют в воде. С печатающих элементов удаляется слой, оставшийся растворимым (рис. 5.10, с). Как уже отмечено, готовая форма содержит печатающие элементы 4, через которые краска передается на запечатываемую поверхность и пробельные элементы 5, препятствующие попаданию краски на запечатываемую поверхность.

    Для контроля формного процесса используются аналоговые тест-обьекты - негативы и диапозитивы. Это фотоформы, содержащие специальные изображения, позволяющие выбрать оптимальные режимы проведения процесса и оценить качество готовых печатных форм, В некоторых случаях они содержат и изображения, необходимые для контроля печатного процесса.

    Диапозитивы для контроля формных процессов плоской офсетной печати содержат, прежде всего, изображения шкал для оптимального выбора времени экспонирования. Это могут быть либо полутоновые, либо специальные растровые шкалы, содержащие высоколиниатурные растровые изображения на низколиниатурном фоне. Если время экспонирования выбрано оптимально, то относительные площади соответствующих изображений одинаковы, и соответствующие поля сливаются.

    Специальные изображения позволяют после проявления копии визуально определить степень прижима фотоформы к копировальному слою, и в случае необходимости, отрегулировать условия экспонирования. Штриховые и текстовые изображения служат для контроля воспроизведения штрихов. Растровые шкалы с различными линиатурами служат для контроля градационной передачи. Негативы для контроля процессов изготовления форм высокой и флексографской печати содержат в качестве контрольных элементов отдельные негативные и позитивные штрихи и точки, растровые поля с различными относительными площадями, фрагмент крупной сетки с взаимно перпендикулярными линиями. Тест-объект для контроля форм высокой печати дополнительно содержит еще несколько растровых шкал с различной линиатурой.

    Вопросы для самопроверки

    1. Расскажите об изготовлении печатных форм по аналоговой технологии.
    2. Какие формные материалы применяются для изготовления печатных форм по аналоговой технологии?
    3. Что такое копировальные слои, каковы их разновидности, какие вещества входят в их состав?
    4. Какие требования предъявляются к копировальным слоям, и чем они обусловлены?
    5. Какое оборудование необходимо для изготовления печатных форм по аналоговой технологии, и каковы особенности этого оборудования в зависимости от вида печатных форм, для которых оно предназначено?
    6. Что такое приводка по штифтам?
    7. Как изготавливаются печатные формы плоской офсетной печати на позитивных слоях?
    8. Как изготавливаются печатные формы плоской офсетной печати на негативных слоях?
    9. На каких материалах и каким образом изготавливаются печатные формы высокой типографской печати?
    10. На каких материалах и каким образом изготавливаются печатные формы высокой флексографской печати?
    11. Какое строение имеют печатные формы трафаретной печати?
    12. Как изготавливаются печатные формы трафаретной печати?
    Поделиться