Светодиоды для растений, спектр светодиодных ламп. Белый светодиод Дешёвые китайские лампочки безвредны для здоровья

В последнее время был поднят ажиотаж вокруг светодиодных ламп, которые должны заменить собой обычные лампы Ильича. И как поведал главный нанотехнолог России, такие лампы скоро поступят в продажу в Москве и Санкт-Петербурге. Конечно, всё было обставлено с пафосом: первым оценил новинку В.В.Путин. Мне удалось достать лампочку от «Оптогана» одним из первых, к тому же в руках у меня оказались ещё одна лампочка российского производства («СветаLED» или «SvetaLED»), правда побитая жизнью, но рабочая, и китайский NoName, которую с лёгкостью можно купить на ebay или dealextreme.com.

Когда мне в руки попадает хоть какой-либо мало-мальски ценный и интересный предмет (от теней для век до процессора или , мне сразу хочется его разобрать и заглянуть внутрь, увидеть, как это всё устроено и работает. Видимо, это и отличает учёных от обывателей. Согласитесь, какой нормальный человек будет разбирать лампочку за 1000 рублей, но что поделать – партия сказала: надо!

Часть теоретическая

Как Вы думаете, почему все так озабочены заменой ламп накаливания , которые стали символом целой эпохи, на газоразрядные и светодиодные ?

Конечно, во-первых, это энергоэффективность и энергосбережение. К сожалению, вольфрамовая спираль больше излучает «тепловых» фотонов (т.е. свет с длинной волны более 700-800 нм), чем даёт света в видимом диапазоне (300-700 нм). С этим трудно спорить – график ниже всё расскажет сам за себя. С учётом того, что потребляемая мощность газоразрядных и светодиодных ламп в несколько раз ниже, чем у ламп накаливания при той же освещённости, которая измеряется в люксах . Таким образом, получаем, что для конечного потребителя это действительно выгодно. Другое дело – промышленные объекты (не путать с офисами): освещение пусть и важная часть, но всё-таки основные энергозатраты связаны как раз с работой станков и промышленных установок. Поэтому все вырабатываемые гигаватты уходят на прокатку труб, электропечи и т.д. То есть реальная экономия в рамках всего государства не так уж и велика.

Во-вторых, срок службы ламп, пришедших на замену «лампочкам Ильича», выше в несколько раз. Для светодиодной лампы срок службы практически неограничен, если правильно организован теплоотвод.

В-третьих, это инновации/модернизации/нанотехнологии (нужное подчеркнуть). Лично я ничего инновационного ни в ртутных, ни в светодиодных лампах не вижу. Да, это высокотехнологичное производство, но сама идея – это всего лишь логичное применение на практике знания о полупроводниках, которому лет 50-60, и материалов, известных около двух десятилетий.

Так как статья посвящена светодиодным лампам, то я более подробно остановлюсь на их устройстве. Давно известно, что проводимость освещённого полупроводника выше, чем проводимость неосвещённого (Wiki). Каким-то неведомым образом свет заставляет электроны бегать по материалу с меньшим сопротивлением. Фотон, если его энергия больше ширины запрещённой зоны полупроводника (E g), способен выбить электрон из так называемой валентной зоны и закинуть в зону проводимости.


Схема расположения зон в полупроводнике. E g – запрещённая зона, E F – энергия Ферми, цифрами указано распределение электронов по состояниям при T>0 ()

Усложним задачу. Возьмём два полупроводника с разным типом проводимости и и соединим вместе. Если в случае с одним полупроводником мы просто наблюдали увеличение тока, протекающего через полупроводник, то теперь мы видим, что этот диод (а именно так по-другому называется p-n-переход, возникающий на границе полупроводников с различным типом проводимости) стал мини-источником постоянного тока, причём величина тока будет зависеть от освещённости. Если выключить свет, то эффект пропадёт. Кстати, на этом основан принцип работы солнечных батарей .


На стыке полупроводников p и n типа возникающие после облучения светом заряды разделяются и «уходят» каждый к своему электроду ()

Теперь вернёмся к светодиодам. Получается, что можно провернуть и обратное: подключить полупроводник p-типа к плюсу на батарейке, а n-типа – к минусу, и… И ничего не произойдёт, никакого излучения в видимой части спектра не будет, так как наиболее распространенные полупроводниковые материалы (например, кремний и германий) – непрозрачны в видимой области спектра. Всему виной то, что Si или Ge являются не прямозонными полупроводниками . Но есть большой класс материалов, которые обладают полупроводниковыми свойствами и одновременно являются прозрачными. Яркие представители – GaAs (арсенид галия), GaN (нитрид галлия).

Итого, чтобы получить светодиод нам надо всего-то сделать p-n-переход из прозрачного полупроводника. На этом я, пожалуй, остановлюсь, ибо, чем дальше, тем сложнее и непонятнее становится поведение светодиодов.

Позволю себе лишь несколько слов о современных технологиях производства светодиодов. Так называемый активный слой представляет собой очень тонкие 10-15 нм толщиной перемежающиеся слои полупроводников p- и n-типа, которые состоят из таких элементов как In, Ga и Al. Такие слои эпитаксиально выращивают с помощью метода MOCVD (metal-oxide chemical vapor deposition или химическое осаждение из газовой фазы).


Схематичное представление устройства светодиода

Есть ещё одна проблема, которая мешает реализовать 100% конверсию (преобразование 1 электрона в 1 фотон) электричества, и заключается она в том, что даже такие тонкие слои полупроводников в определённой степени поглощают свет. Даже не то, чтобы сильно поглощают, просто свет «блуждает» внутри кристалла из-за эффекта полного внутреннего отражения на границе кристалл/воздух: увеличивается длина пути до выхода света из кристалла и, в конечном счёте, такой блуждающий фотон может поглотиться. Один из путей решения – использование структурированных подложек. Например, в современной светодиодной промышленности широко используется метод формованной сапфировой подложки. Такое микроструктурирование приводит к повышению эффективности светоотдачи всего диода ().

Для заинтересованных читателей могу предложить познакомиться с физикой , лежащей в основе работы светодиодов. Помимо этой интересной работы, выполненной в стенах родного МГУ, у Светланы и Оптогана есть прекрасная плеяда научных коллективов в самом Санкт-Петербурге. Например, ФизТех . А ещё можно почитать .

Часть методическая

Все измерения спектров ламп были сделаны в течение 30 минут (т.е. фоновый сигнал менялся слабо) в затемнённой комнате с помощью спектрометра Ocean Optics QE65000. можно почитать об устройстве спектрометра. Помимо 10 зависимостей на каждый вид ламп был измерен темновой спектр, который затем вычитали из спектров лампочек. Все 10 зависимостей для каждого образца суммировались и усреднялись. Дополнительно каждый итоговый спектр был нормирован на 100%.


Спектрометр Ocean Optics – отличный инструмент в умелых руках

Часть практическая

Итак, приступим. В наличии у нас есть шесть лампочек: 3 для полного разбора и ещё 3 для сравнения (так сказать контрольные образцы):
1. Лампочка Ильича
2. Лампочка Ильича М (т.е. газоразрядная лампа, формой повторяющая привычную лампочку Ильича)
3. Спираль Ильича (обычная газоразрядная лампа)
4. LED-лампа от «Оптогана»
5. LED-лампа от «СветаLED»
6. LED-лампа из Китая NoName


Все лампочки в сборе. Можем начинать!

Спектры
Ничего сверхъестественного тут мы не увидели. Лампочка Ильича безбожно пускает всё электричество в нагрев и цвет её то ли жёлтый, то ли оранжевый. Все ртутные лампы имеют полосатый спектр, который в человеческом глазе, как одновременное включение 3 пикселов (RGB) на экране (синие линии – ~420 нм, зелёные - ~550 нм, оранжевые и красные – всё, что выше 600 нм), преобразуется в белый.


Спектр трёх лампочек сравнения (для сравнения под шкалой представлена часть спектра, которая воспринимается человеческим глазом)

А вот у светодиодных ламп спектр разительно отличается. Есть две компоненты: собственно, синяя от самого диода, и вторая, размазанная по всему спектру, – от люминофора или, по-русски, флуоресцентного красителя, который наносят на сами светодиоды и заливают сверху защитным слоем полимера. Соотношение между синим цветом диода и полосой эмиссии (испускания) люминофора определяет цветовую температуру лампы. Мы можем видеть, что у «Оптогана» самый тёплый свет, а у Китая самый холодный. Выгодно использовать 1 люминофор для регулирования цветовой температуры, таким образом, толщина слоя люминофора в купе с мощностью светодиода и определяет цветовую температуру. Стоит отметить, что в лампочках из Китая и от «Светланы» используется, по всей видимости, один и тот же люминофор, а вот «Оптоган» применяет свой собственный (существенное отличие максимума полосы испускания люминофора).


Сравнение спектров светодиодных ламп и традиционной лампы Ильича (для сравнения под шкалой представлена часть спектра, которая воспринимается человеческим глазом)

Лампочка от Светланы нам досталась в поломанном виде, и спектр мы снимали уже без матового стекла. Однако позвольте продемонстрировать аналогичную ситуацию на примере лампы из Китая, благо их было две штуки. Нормированные спектры мало различаются между собой, а небольшое увеличение интенсивности можно списать на то, что более длинноволновое излучение лучше рассеивается на матовом стекле.


Сравнение ламп китайского производства с и без стеклянной колбы (для сравнения под шкалой представлена часть спектра, которая воспринимается человеческим глазом)

Если кому-то будет интересно, то представлено довольно обстоятельное моделирование характеристик светодиодов.

Цена, материалы и характеристики


Трёх девиц под окном ломали поздно вечерком… Слева направо: Оптоган, СветаLED и NoName Китай

Китайский NoName
Лампочка из Китая была заказана через dealextreme.com и доставлена в Россию в течение 2 месяцев (сами понимаете, Почта России). Её стоимость около 14$ или примерно 420 рублей, включая доставку. Цветовая температура 5000-6000К, что соответствует белому холодному свету. Размеры совпадают с обычной лампочкой Ильича. Материал «колбы» - матовое стекло. На мой взгляд, идеальная замена обычной лампе накаливания, если бы цветовая температура была на 1000-2000К ниже указанной.
«Оптоган»
Лампочка была представлена простым смертным на специальной презентации . Дизайн от Артемия Лебедева, благородные материалы корпуса – поликарбонат и алюминий с фирменной символикой «Оптогана». Цветовая температура 3050 К. Очень мягкая и приятная лампа, но цена кусается – 995 рублей за штуку. Кому она нужна за такие деньги?!

Кстати, с качеством у Оптогана пока проблемы: тест на выносливость не проходит. Пару раз ввернул/вывернул и получил следующий результат:


Хлипкое крепление. Дамская лампочка, что тут ещё сказать!

«СветаLED»
LED-ламы этой фирмы пока ещё не появились на российском рынке, но говорят, что цена будет около 450-500 рублей. Однако ко мне в руки она попала, упакованной в стильную коробочку (видимо, какая-то пилотная партия), на которой значится температура 3500-4500К (это всё равно, что указать, что длина экватора от 35 000 км до 45 000 км). Радиатор запрятан под алюминиевым колпаком (мелочь, а приятно, как будто держишь в руках обычную лампочку Ильича, только немножко «переделанную»), а вокруг алюминиевого диска со смонтированными светодиодными модулями всё обильно замазано термопастой типа КТ-8. Говорят, что «Светлана» каким-то образом относится к военным, которые, видимо, живут по принципу Джейми Хайнемана : «Сомневаешься – смажь!». К примеру, у китайской лампы термопаста нанесена только под самими светодиодными модулями.

Те, кто нещадно бил лампочки «СветаLED» и NoName из Китая говорят, что стекло довольно хрупкое, и по качеству (чисто субъективная оценка) уступает лампочкам накаливания.

Так ковырялась лампочка…
На чипе лампы «Оптогана»
Тег #RusNT поставить надо!
И нам засветит #RusNT
И в сентябре, и в феврале
(с) АП

Небольшой фотоотчёт (видеокамера почему-то отказалась работать) о том, как мы разбирали лампочки:


К гламурному эксперименту надо подходить гламурно! (Хотя все совпадения цветов вымышлены)


Самое главное оружие – молоток, как же без него?!


Честно, я старался, но поликарбонат так и не поддался. Разрушалось всё, стол, линолеум, алюминиевый радиатор, но не поликарбонат, который в последствие был удалён отвёрткой. Но лампочка даже в полуразобранном состоянии продолжала гореть.


Далее пришлось очень долго ковырять драйвер, который залит каким-то полимером. В результате и драйвер, и гордость Оптогана – монолитный светодиодный чип – были извлечены на поверхность.

Драйвер
Ниже представлены все 3 драйвера вместе. Оцените сложность исполнения каждого из них…


Сверху вниз: «Оптоган», «СветаLED» и Китай

Начнём с самого нижнего. Китайский драйвер, честно говоря, мне понравился: мощные конденсаторы, катушки, немножко преобразующей электроники (диодный мост и т.д.). Всё выполнено очень компактно, из-за чего сама лампа имеет довольно скромные размеры. Также, большим плюсом является то, что все подводящие провода длинные, т.е. реально можно «отремонтировать» лампу! Или использовать драйвер после срока службы лампы в каких-то иных целях. Конечно, большинству обычных пользователей до этого нет дела, но всё-таки это можно отнести к потенциальным плюсам. Сама подложка со светодиодными чипами крепится на 2 миниатюрных болтика (ведь китайская же…), так что, в прямом смысле, с лампой можно обходиться как с конструктором.


Драйвер из китайской NoName LED-лампочки


Проводки действительно очень длинные…

Лампа производства компании «Оптоган» имеет очень сложный драйвер с твердотельными конденсаторами и, как меня убеждали специалисты, с импульсным блоком питания (хотя все светодиодные лампы должны иметь такой блок питания). При этом сам драйвер наравне со светоизлучающим модулем является «фишкой» фирмы и её основной гордостью. Ходят слухи, что компания будет вести R&D в области минимизации этого драйвера и, возможно, в ближайшем будущем уменьшит размер своей гигантской лампочки до приемлемых размеров.


Гордость «Оптогана» – драйвер и светоизлучающий модуль – рядом с главным фейлом – цоколем

«СветаLED». Назвать это драйвером язык не поворачивается. Даже у Китая есть какие-то «плюшки», которые улучшают потребительские свойства лампы (например, защищают от мигания), но здесь нет ничего ровным счётом, кроме диодного моста, предохранителя, огромнейшего конденсатора (10 мкФ, 450 В – много это или мало?! стоит сказать, что энергии, запасённой в конденсаторе, хватает на то, чтобы лампочка светила 1,5 минуты после отключения питания) и, по всей видимости, коммутатора нагрузки. Всё настолько просто и примитивно, что я сначала был слегка удивлён. Истинное детище сумрачного российского гения …


Тоже гордость…сумрачного российского гения

Возможно, что простота исполнения – козырь лампочки «СветаLED». Мерцания с частотой 50 Герц, скорее всего, среднестатистический глаз вряд ли увидит, да и неоткуда им там взяться, так как мощный конденсатор всё сглаживает, а люминофор и подавно не сможет так быстро высвечивать закачанную в него энергию (фосфоресценцию в сложных молекулярных красителях никто не отменял). Отсюда должна вытекать низкая стоимость лампы… хм, но где-то тут есть подвох, так как лампа планируется к выпуску по цене, близкой к китайскому аналогу с учётом разовой доставки в Россию!

N.B. Важно помнить, что помимо всего прочего важными и зависящими от устройства драйвера параметрами являются: коэффициент пульсаций, которые могут негативно влиять на умственную активность человека, и фоновое электромагнитное излучение, которое неизбежно возникает из-за использования различных «выпрямляющих» схем. Но это уже совсем другая история…

Светодиоды
Вот мы и дошли до самого лакомого кусочка нашего исследования. В Интернете есть множество публикаций (раз , два , три), где приводится сравнение спектров ламп разных производителей, их потребительских характеристик (дизайн, срок службы и т.д.), но сейчас мы опустимся чуть ниже, чтобы стать ближе к самим светоизлучающим элементам ламп. Сразу оговорюсь, что все 3 лампы примерно одной и той же мощности 5-6 Вт (если внимательно посмотреть технические характеристики лампы «Оптогана», то мы обнаружим изображение данного чипа , рассчитанный на 5 Вт, тогда как заявленная мощность лампы 11 Вт) и имеют примерно одинаковую светоизлучающую площадь. Итого мы имеем световой поток на Вт (люме н на Вт): Китай – 70-90, Оптоган – 65, Светлана – 75. Мне кажется, это важно, если уважаемые читатели захотят сравнить лампы между собой!

Если честно, то к китайскому светодиоду, именно к самому чипу, я проникся симпатией. Красота его внутреннего устройства просто восхитительна. Мне повезло: пока я отрывал все слои с этого светодиода, нечаянно повредил большой диод-чип, в результате чего обнажилась микроструктурированная сапфировая подложка:


Оптические микрофотографии китайского чипа вид сверху: золотистые полосы на чипе – токоподводящие контакты.


Слоистая структура светоизлучающего чипа при максимальном увеличении на оптическом микроскопе. Темная область соответствует сапфировой подложке. Стрелками отмечены отдельные слои или группы слоёв.

Кстати, сам чип изолирован от внешнего мира как минимум 3 слоями, но мне кажется, что их всё-таки там 4. Первый – полимер с люминофором, превращающий часть излучения в синей области спектра в жёлто-оранжевую. Второй – небольшой слой мягкого полимера, затем выпуклая оболочка (а-ля линза) из твёрдого полимера, и ещё два слоя из мягкого и твёрдого полимеров.

Мне хотелось бы отметить, что по сравнению с остальными лампами китайская максимально просто устроена. Всего 4 проводка соединяют большой чип с окружающим миром (у остальных ламп их гораздо больше), всего 1 светоизлучающий чип на диод, который уже непосредственно монтируется на плату, грамотно разведённые токоподводящие контакты на самом чипе, позволяющие равномерно по всей поверхности протекать электрическому току (что-то подобное есть и у «Оптогана»). Каких-то явных, существенных недостатков мне найти не удалось.


SEM-изображения структурированной сапфировой подложки


Слоистая структура выдаёт, что мы на правильном пути (следствие метода создания чипов - MOCVD), но разглядеть отдельные слои активной области вряд ли удастся…


Чип и контакты, которые его питают

Приступим к лампочке от «Оптогана». Самое странное, на мой взгляд, – расположение светоизлучающего модуля. По центру. И у Китая, и у «Светланы» несколько «миниатюрных» модулей мощностью по 1 Вт равномерно распределены по подложке, таким образом, теплоотвод от светодиодов этих фирм намного лучше, чем от модуля «Оптогана». Да, я прекрасно понимаю, что светодиодный модуль «Оптогана» выполнен из меди, она хорошо проводит тепло, а большой радиатор эффективно его рассеивает. Но лампочка от «Оптогана» имеет огромные размеры, которые, кстати, ещё и обусловлены тем, что надо как-то крепить поликарбонатную колбу, и влезет не в каждый патрон.

Такой светодиодный модуль устроен довольно просто: в шахматном порядке под полимерным слоем, окрашенным жёлто-оранжевым люминофором, расположены отдельные диоды, которые соединены друг с другом (схему соединения диодов и прочие технические детали можно найти ).


SEM-изображение отдельных светодиодов на подложке после удаления полимерного слоя

Сам же полимерный слой имеет довольно интересную структуру. Он состоит из маленьких (диаметр ~10 мкм) шариков:


Оптические микрофотографии «изнанки» полимерного слоя

Случайно получилось так, что один разрезанный микротомом диод остался в полимерном слое. Стоит отметить, что сам диод действительно прозрачен и сквозь него видны контакты на другой стороне чипа:


Оптические микрофотографии светодиода с тыльной стороны: отличная прозрачность для такого рода изделий

Полимерный слой настолько прочно приклеен как к самой медной подложке, так и к отдельным чипам, что после его удаления на поверхности диодов всё равно остаётся тонкий слой полимера. Ниже на изображениях, полученных с помощью электронного микроскопа можно во всей красе увидеть «скол» того самого активного слоя диода, в котором электроны «перерождаются» в фотоны:


SEM-изображения светоизлучающего слоя отдельного светодиода (стрелками указано расположение активного слоя)


А вот и текстурированный буферный слой, внимательно присмотритесь к правому нижнему изображению – оно нам ещё пригодится (стрелками указан буферный слой)


После неаккуратного обращения с чипом некоторые контакты повредились, а некоторые остались целыми

И последняя лампа – «СветаLED». Первое, что удивляет, – подложка со светодиодными модулями – внимание! – прикручена на здоровенный болтик к остальной лампе (прям как в Китае делали). Когда разбирал, думал, что может мешать «оторвать» её от остальной лампы, а потом увидел болтик… Кстати, на обороте этой алюминиевой подложки маркером! написан какой-то номер. Такое создаётся ощущение, что на заводе Светланы под Питером работают гастарбайтеры, которые собирают эти лампы вручную. Хотя нет, погодите, ведь лампочки производят военные… …


Мало того, что подложка со светодиодами прикручена на шурупчик, так на обратной стороне написан номер… МАРКЕРОМ – ручная работа…

Сами модули намертво посажены на алюминиевую подложку: оторвать целиком не получается. Видимо припаяны, чтобы улучшить теплопроводность. Здесь я много комментировать не буду, так как все комментарии приведены выше при обсуждении лампы «Оптогана».


Оптические микрофотографии светоизлучающего диода от компании Светлана: на изображении-вставке отчётливо видна микроструктура подложки

На заметку: удалось разглядеть, как соединены отдельные чипы в модуле от «Светланы». Последовательно, к моему великому разочарованию. Таким образом, если «перегорит» хотя бы 1 светодиод, то весь модуль перестанет работать.


SEM-изображения светоизлучающего диода от компании Светлана (стрелочками показана активная область). На левом верхнем рисунке добавлено изображение предполагаемых контактов так, как они должны были быть проложены в модуле (4 x3 диода).


Всё та же знакомая микроструктурированная сапфировая подложка…


Не вызывает ли эта картинка эффекта déjà vu?! Стрелочками указан буферный слой.

К сожалению, сайт компании, производящей лампы «СветаLED», выполнен истинными дизайнерами: много красивых картинок и мало смысла, нет нормальных дотошных спецификаций, как, например, на сайте «Оптогана» (кстати, он существует на двух доменах и COM с примерно одинаковым содержанием). К тому же, есть сайт, посвящённой только 1 лампочке , есть сайт собственно самой компании , но спецификации вообще почему-то лежат на совершенно ином ресурсе .

Скандалы, интриги, расследования…

Если кто-то дочитал до этого момента, то сейчас начнётся всё самое интересное. А именно, давайте я просто представлю на Ваш суд данные, которые мне показались интересными:
1. На этом рисунке я попытался привести фотографии с какими-то характерными особенностями диодов от «Светланы» и «Оптогана»:

2. Внимательно почитайте спецификацию на сайте «Оптогана» и на сайте «Светланы» . Модуль у «Светланы» имеет размеры 5 на 5 мм, 2 уголка на «крышке» срезаны под 45 градусов и т.д. – многое совпадает со спецификацией «Оптогана». Продолжающийся эффект déjà vu не мучает?! А может просто всё закупается на Тайване?!

И, конечно же, выводы

Готов ли быть патриотом и назвать лампу «отечественного» (например, у «Оптогана» чипы производятся в Германии) производства лучшей по совокупности всех факторов?! Пожалуй, что нет. Честно, светодиодная лампа китайского производства меня приятно порадовала: относительная простота схемы питания диодов, простые материалы, удачное размещение светодиодов на подложке. Проблема с цветовой температурой решаема, а вот единственный минус, который меня как покупателя смущает, это долговечность лампочки из Поднебесной.

Лампы «отечественного» производства, а в особенности, «Оптоган» как всегда «радуют» своей ценой. Я больше, чем уверен, что можно было бы начать с «кустарного» дизайна, дешёвых материалов (стекло вместо поликарбоната) и заполнить нишу бюджетных источников света (вроде как богачей в России не так уж много, или я чего-то не знаю?!). Но даже не это главное, готовых вложить 1000 рублей в лампочку и не думать об их покупке в течение нескольких лет найдётся не мало. Оставим внешнее поразительное сходство между модулями, меня больше заботит другое – сходство между отдельными светодиодными чипами (геометрические размеры, расположение, контакты и т.д.). Такое ощущение, что изготавливали их на оборудовании одной и той же фирмы, только версии этого оборудования отличаются как v.1.0 и v.1.1. Конечно, я понимаю, что самое главное в светодиоде – внутренняя структура активной зоны, но, согласитесь, трудно достать 1 чип размером 160 на 500 мкм (толщина человеческого волоса 50-80 мкм) и сравнить эмиссионные спектры у чипов «Оптогана» и «Светланы».

Тем не менее, если компании «Оптоган» доработает цоколь, уберёт дорогие материалы (поликарбонат), уменьшит размеры, заменит 1 мощный чип на несколько более простых и оптимизирует драйвер (короче, вы поняли – полностью переделает лампу), то у такой лампочки будут все шансы завоевать российский рынок, так как помимо указанных недостатков, есть и масса плюсов таких, как грамотное соединение диодов в модуле, умный «драйвер» и т.д. Спасибо технической документации.

Что же касается «Светланы», то кроме простейшего драйвера, который должен влиять на цену в сторону понижения, расположения светоизлучающих модулей на подложке, плюсов-то практически и нет. Техническая документация мутная, светодиоды соединены последовательно, что при «перегорании» 1 диода выводит целый модуль из строя (т.е. в нашем случае снижает световой поток на 12,5%), размазанная повсюду термопаста – всё это уверенности не добавляет. Но, это был всего лишь прототип, может быть, промышленные образцы будут лучше.

Данная статья не имеет целью очернение или наоборот превознесение продукции одних производителей над другими. Привожу только факты, а уж вывод делать вам! Как говорится, думайте сами, решайте сами…

Видео раздел

Спасибо большое OSRAM, что подготовил столь подробное видео о том, как производит светодиоды (правда, эта компании делает светодиоды по несколько иной технологии, нежели все нами изученные лампочки):

Процесс переноски светодиодных чипов внутрь пластикового корпуса:

А так на Тайване «фасуют» светодиодные чипы по пластиковым модулями с нанесением красителя и упаковкой в бобины:

Спектральные характеристики

Сами файлы для анализа можно скачать (надеюсь народюру не подведёт). За спектральные характеристики благодарим и его коллегу Антона(если коллеге нужен инвайт - пишите).

Если кратко, то:
Свет высшего качества у лампы накаливания (Ra=96). На втором месте традиционная и хорошо отработанная технология - люминисцентные лампы (Ra=82 и 85). На третьем светодиодные лампочки. Среди светодиодных лампочек места распределились ожидаемым образом - на первом месте немецко-российские лампочки Оптоган (Ra=80), на втором и третьем месте китайские лампочки (Ra=70) и российские лампочки Светлана (Ra=68).

P.S. В среду (26.10) начнётся Форум по нанотехнологиям

В-третьих , если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»

Yandex.Money 41001234893231
WebMoney (R296920395341 или Z333281944680)

Иногда кратко, а иногда не очень о новостях науки и технологий можно почитать на моём Телеграм-канале - милости просим;)

Спектр излучения светодиода определяется шириной запрещенной зоны используемого полу­проводникового материала, типом легирующих примесей, уров­нем легирования и механизмом излучательной рекомбинации . Как указывалось выше, основными материалами для изготовления эффективных светодиодов являются бинарные по­лупроводниковые соединения А III В V и их твердые растворы. На рис. 4.4 в относительных единицах представлены спектры излу­чения при комнатной температуре некоторых типичных светоди­одов, выпускаемых промышленностью.

Наибольшей эффективностью облада­ют светодиоды на основе арсенида галлия GaAs с шириной запрещенной зоны E = 1,45эВ. Следовательно, максимум спектральной характеристики излучения собственно GaAs наблюдается на длине волны λ max =1,24/1,4 = 0,9 мкм, что соответствует инфракрасной области. При легировании GaAs различными примесями (теллур, селен, литий и др.), имеющими различные глубины залегания в запрещенной зоне, светодиоды могут излучать в диапазоне λ max = 0,9…0,96 мкм. Светодиоды на GaAs имеют наиболее высокую квантовую эффективность (η внеш =10…30 % в зависимости от конструкции). Важно, что спектр излучения GaAs -светодиодов очень хорошо соответствует спектру фоточувствительности наиболее распрост­раненных Si -фотодиодов.

Светодиоды на более длинноволновую область изготавлива­ются на основе прямозонных твердых растворов Ga х 1п 1-х А s и Ga х 1п 1-х А s 1-у Р у . Для них преобладающей является квазимежзонная излучательная рекомбинация.

Важно, что максимум спек­тра излучения таких светодиодов задается составом твердого раствора. Изменяя х и у , можно изготовить светодиод на задан­ную область спектра, например, совпадающую с минимумом потерь в оптическом волокне или с максимумом спектра погло­щения какого-либо вещества, концентрацию которого предстоит контролировать. Светодиоды на область спектра λ >5 мкм могут быть изгото­влены на основе халькогенидов свинца: Р b х S п 1- x Те и ртути: Cd х Hg 1- x Те .

Фосфид галлия (G aP ) имеет ширину запрещенной зоны E = 2,25 эВ, что определяет длину волны излучения λ max =0,56 мкм. Это соответствует зеленому цвету свечения. При легировании примесями (N , O 2 , Zn ) такие светодиоды могут излучать красный, желтый, зеленый свет. Таким образом, GaP светодиоды предназначены для работы в видимой части спектра. Для GaP – η внеш = 7…0,7 %.

Светоизлучающие диоды на коротковолновую область види­мого спектра, работающие в голубом, синем и фиолетовом диа­пазонах, могут быть созданы на основе нитрида галлия GaN и гетеропереходов с использованием твердых растворов Ga х In 1- x N и Ga 1- x Al x N . Светодиоды на основе GaN дают излучение λ max =0,44 мкм, но с очень низкой эффективностью η внеш 0,5 %.

Для этой же цели применяют карбид кремния SiC . Хотя диоды на основе SiC имеют малый η внеш  0,01 %, но обладают высокой временной и температурной стабильностью. На их основе создают эталонные источники излучения.

Рис.4.4. Спектры излучения светодиодов.

Для излучающих диодов как инфракрасного, так и видимого излучения широко применяют тройные соединения, изготовленные на основе твердого раствора галлий-алюминий-мышьяк GaAlAs . Применяют также твердые растворы на основе галлий-мышьяк-фосфор GaAsP и индий-галлий-фосфор InGaP . По обобщенному показателю (Р изл , быстродействие) GaAlAs наиболее полно удовлетворяет требованиям оптоэлектроники. В этом материале часть атомов Ga в кристалле GaAs замещается атомами Al . По мере увеличения доли замещенных атомов ширина запрещенной зоны меняется от E =1,45 эВ (GaAs ) до E =2,16 эВ (чистый AlAs ). Таким образом, такие светодиоды могут излучать на длине волны max =0,6…0,9 мкм, т.е. генерировать излучение как в видимой, так и инфракрасной области спектра. Внешний квантовый выход для этого материала составляет η внеш =1,2…12 %.

Яркость высвечивания светодиода или мощность излучения практически линейно зависит от тока через диод в широком диапазоне изменения токов. Исключение составляют красные GaP - светодиоды, у которых с ростом тока наступает насыщение яркости. При постоянном токе через светодиод его яркость с ростом температуры уменьшается. Для красных GaP - светодиодов повышение температуры по сравнению с комнатной на 20 o C уменьшает их яркость примерно на 10%, а зеленых - на 6%. С ростом температуры сокращается срок службы светодиодов. Также сокращается срок службы светодиода с увеличением его тока.

Существует два распространенных пути получения белого цвета свечения достаточной интенсивности с помощью светодиодов. Первый - это объединение в одном корпусе светодиода чипов трех основных цветов - красного, зеленого и синего. Смешением этих цветов получается белый цвет, кроме того, меняя интенсивность основных цветов, получается любой цветовой оттенок, что применяется при изготовлении . Второй путь - использование люминофора для конвертирования излучения синего или ультрафиолетового светодиода в белый цвет. Подобный принцип используется в лампах дневного света. В настоящее время, второй способ превалирует из-за низкой стоимости и бóльшего светового выхода люминофорных светодиодов.

Люминофоры

Люминофоры (термин происходит от латинского lumen - свет и греческого phoros - несущий), это вещества, способные светиться под действием различного рода возбуждений. По способу возбуждения различают фотолюминофоры, рентгенолюминофоры, радиолюминофоры, катодолюминофоры, электролюминофоры. Некоторые люминофоры бывают смешанных типов возбуждения, например, фото-, катодо- и электролюминофор ZnS·Cu. По химической структуре различают органические люминофоры - органолюминофоры, и неорганические - фосфóры. Фосфóры, имеющие кристаллическую структуру, называют кристаллофосфóрами. Отношение излученной энергии к поглощённой называется квантовым выходом.

Свечение люминофора обуславливается как свойствами основного вещества, так и наличием активатора (примеси). Активатор создает в основном веществе (основании) центры свечения. Наименование активированных люминофоров складывается из имени основания и активатора, например: ZnS·Cu,Co означает люминофор ZnS, активированный медью и кобальтом. Если основание смешанное, то перечисляют сначала названия оснований, а затем активаторов, например, ZnS,CdS·Cu,Со.

Возникновение у неорганических веществ люминесцентных свойств, связано с образованием в кристаллической решетке основы люминофора в процессе синтеза структурных и примесных дефектов. Энергия, возбуждающая люминофор, может поглощаться как люминесцентными центрами (активаторное или примесное поглощение), так и основой люминофора (фундаментальное поглощение). В первом случае, поглощение сопровождается либо переходом электронов внутри электронной оболочки на более высокие энергетические уровни, либо полным отрывом электрона от активатора (образуется «дырка»). Во втором случае, при поглощении энергии основой, в основном веществе образуются дырки и электроны. Дырки могут мигрировать по кристаллу и локализоваться на центрах люминесценции. Излучение происходит в результате возвращения электронов на более низкие энергетические уровни или при рекомбинации электрона с дыркой.

Люминофоры, в которых люминесценция связана с образованием и рекомбинацией разноименных зарядов (электронов и дырок), получили название рекомбинационных. Основой для них служат соединения полупро­водникового типа. В этих люминофорах кристаллическая решетка основы является той средой, в которой развивается процесс люминесценции. Это дает возможность, изменяя состав основы, широко варьировать свойства люминофоров. Изменение ширины запрещенной зоны при использовании одного и того же активатора плавно в больших пределах изменяет спектральный состав излучения. В зависимости от применения, предъявляются различные требования к параметрам люминофора: типу возбуждения, спектру возбуждения, спектру излучения, выходу излучения, временным характеристикам (времени нарастания свечения и длительности послесвечения). Наибольшее разнообразие параметров можно получить у кристаллофосфоров, меняя активаторы и состав основания.

Спектр возбуждения различных фотолюминофоров широк, от коротковолнового ультрафиолетового до инфракрасного. Спектр излучения также находится в видимой, инфракрасной или ультрафиолетовой областях. Спектр излучения может быть широким или узким и сильно зависит от концентрации люминофора и активатора, а также от температуры. Согласно правилу Стокса - Ломмеля, максимум спектра излучения смещен от максимума спектра поглощения в сторону длинных волн. Кроме того, спектр излучения обычно имеет значительную ширину. Это объясняется тем, что часть энергии, поглощаемой люминофором рассеивается в его решетке, переходя в тепло. Особое место занимают «антистоксовские» люминофоры, которые излучают энергию в более высокой области спектра.

Энергетический выход излучения люминофора зависит от вида возбуждения, его спектра и механизма преобразования. Он снижается при увеличении концентрации люминофора и активатора (концентрационное тушение) и температуры (температурное тушение). Яркость свечения нарастает с начала возбуждения в течение различного промежутка времени. Длительность послесвечения определяется характером преобразования и временем жизни возбуждённого состояния. Наиболее короткое время послесвечения имеют органолюминофоры, наиболее длительное - кристаллофосфоры.

Значительная часть кристаллофосфоров представляет собой полупроводниковые материалы с шириной запрещенной зоны 1-10 эв, люминесценция которых обусловлена примесью активатора или дефектами кристаллической решётки. В люминесцентных лампах применяются смеси кристаллофосфоров, например, смеси MgWO4 и (ZnBe)2 SiO4·Mn] или однокомпонентные люминофоры, например галофосфат кальция, активированный Sb и Mn. Люминофоры для целей освещения подбираются так, чтобы их свечение имело спектральный состав, близкий к спектру дневного света.

Органические люминофоры могут обладать высоким выходом и быстродействием. Цвет люминофора может быть подобран для любой видимой части спектра. Они применяются для люминесцентного анализа, изготовления люминесцирующих красок, указателей, оптического отбеливания тканей и т.д. Органические люминофоры выпускались в СССР под торговой маркой люминоры.

Люминофор в процессе работы подвержен изменению параметров с течением времени. Этот процесс называется старением (деградацией) люминофора. Старение в основном обусловлено физическими и химическими процессами как в слое люминофора, так и на его поверхности, возникновение безызлучательных центров, поглощение излучения в изменившемся слое люминофора.

Люминофор в светодиоде

Белые светодиоды чаще всего изготавливаются на основе синего кристалла InGaN и желтого люминофора. Желтые люминофоры, применяемые большинством производителей, это модифицированный иттрий-алюминиевый гранат, легированный трехвалентным церием (ИАГ). Спектр люминесценции этого люминофора характеризуется максимумом длины волны 530..560 нм. Длинноволновая часть спектра имеет бóльшую протяженность, чем коротковолновая. Модифицирование люминофора добавками гадолиния и галлия, позволяет сдвигать максимум спектра в холодную область (галлий) или в теплую (гадолиний).

Интересны спектральные данные люминофора, применяемого в Cree. Судя по спектру, кроме ИАГ в состав люминофора белого светодиода добавлен люминофор со смещенным в красную область максимумом излучения.

В отличие от люминесцентных ламп, используемый в светодиодах люминофор имеет бóльший срок службы, и старение люминофора определяется в основном температурой. Люминофор чаще всего наносят непосредственно на кристалл светодиода, который сильно нагревается. Другие факторы воздействия на люминофор имеют значительно меньшее значение для срока службы. Старение люминофора приводит не только к уменьшению яркости светодиода, но и к изменению оттенка его свечения. При сильной деградации люминофора хорошо заметен синий оттенок свечения. Это связано с изменением свойств люминофора, и с тем, что в спектре начинает доминировать собственное излучение светодиодного чипа. С внедрением технологии (remote phosphor), влияние температуры на скорость деградации люминофора снижается.

Полосе с максимумом в области жёлтого (наиболее распространённая конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

Энциклопедичный YouTube

    1 / 5

    ✪ Короткие белые светодиоды

    ✪ White LED vs Red Blue White LED Grow Test - Amazon Lights (Intro)

    ✪ Cool White Vs Neutral White LED"s In Flashlights (Thrunite TN12 Models)

    ✪ White LED vs Red/Blue LED Grow light Grow Test - Part 1 (Educational) 2016

    ✪ White LED vs Red Blue White LED Grow Test w/Time Lapse - Lettuce Ep.1

    Субтитры

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды жёлтого и зелёного цвета свечения. Световой выход этих, в то время ещё малоэффективных, устройств к 1990 году достиг уровня в один люмен . В 1993 году Сюдзи Накамура , инженер компании Nichia (Япония), создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зелёный цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем технология быстро развивалась, и к 2005 году световая отдача светодиодов достигла значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и ставшими уже традиционными люминесцентными лампами. Началось использование светодиодных осветительных устройств в быту, во внутреннем и уличном освещении .

RGB-светодиоды

Белый свет может быть создан путём смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические и более многоцветные варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники , лампы , кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель . Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности , такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики . Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток , поскольку световая отдача каждого чипа неизвестна заранее и подвержена изменениям в процессе работы. Для установки нужных оттенков RGB светильники иногда оснащают специальными регулирующими устройствами .

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путём изменения тока каждого светодиода, входящего в «триаду », регулировать цветовой тон излучаемого ими белого света прямо в процессе работы - вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость световой отдачи и цвета от температуры за счёт различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы . Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки , в электронных табло и в видеоэкранах .

Люминофорные светодиоды

Комбинирование синего (чаще), фиолетового или ультрафиолетового (не используются в массовой продукции) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространённая конструкция такого светодиода содержит синий полупроводниковый чип нитрида галлия , модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета - иттрий -алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-сине-зелёного цвета.

В зависимости от состава люминофора выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путём комбинирования различных типов люминофоров достигается значительное увеличение индекса цветопередачи (CRI или R a) . На 2017 год уже существуют светодиодные панели для фото- и киносъёмки, где цветопередача критична, но такое оборудование дорого, а производители - единичны.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости - увеличение тока через полупроводниковый чип без увеличения его размеров - увеличение плотности тока . Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока электрические поля в объёме активной области снижают световой выход . При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному , происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе .

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов - это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светоотдачи до 70 % от первоначального значения (L70) . То есть, светодиод, яркость которого в процессе эксплуатации снизилась на 30 %, считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке, используется в качестве оценки срока жизни уровень снижения яркости 50 % (L50).

Срок службы люминофорного светодиода зависит от многих параметров . Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии отдаёт в виде излучения , часть в виде тепла . При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью , кроме того, материалы и конструкция корпуса обладают определённой неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии , изменению оптических свойств подложки. Всё это приводит к увеличению процента безызлучательной рекомбинации и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также проводятся исследования с другими полупроводниковыми материалами или подложками .

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются , и коэффициент преобразования, а также спектральные характеристики люминофора, ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора и конструкции светодиодных ламп, в которых люминофор физически отделён от излучателя, позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве - вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Современный люминофорный светодиод - это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию :

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его световая отдача , то есть световой выход с каждого ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 190 лм/Вт . Теоретический предел технологии оценивается более чем в 300 лм/Вт . При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счёт КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре, тогда как температура чипа в процессе работы значительно выше. Это приводит к тому, что реальная эффективность излучателя ниже на 5-7 %, а светильника - зачастую вдвое.

Второй не менее важный параметр - качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области , покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика. Этому есть три причины [ ] : первая связана с тем, что разница между энергией падающего и излученного квантов при флюоресценции теряется (переходит в тепло), и в случае ультрафиолетового возбуждения она значительно больше. Вторая причина - в том, что часть УФ излучения, не поглощенная люминофором, не участвует в создании светового потока, в отличие от светодиодов на основе синего излучателя, а увеличение толщины люминофорного покрытия приводит к повышению поглощения в нём света люминесценции. И наконец, КПД ультрафиолетовых светодиодов значительно ниже КПД синих.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств :

Но есть и недостатки:

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например, направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения, находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

См. также

Примечания

  1. , p. 19-20.
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели Архивировано 22 ноября 2012 года.
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  4. Многоцветные светодиоды XB-D и XM-L компании Cree (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии: журнал. - 2009. - № 6 . - С. 88-91 .
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии: журнал. - 2007. - № 2 .
  8. , p. 404.
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии: журнал. - 2005. - № 9 .
  10. Светодиоды для интерьерной и архитектурной подсветки (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  11. Сян Лин Ун (Siang Ling Oon). Светодиодные решения для систем архитектурной подсветки // Полупроводниковая светотехника: журнал. - 2010. - № 5 . - С. 18-20 .
  12. Светодиоды RGB для использования в электронных табло (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  13. High CRI LED Lighting  | Yuji LED (неопр.) . yujiintl.com. Дата обращения 3 декабря 2016.
  14. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии: журнал. - 2011. - № 5 .
  15. Светодиоды с высокими значениями CRI (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  16. Технология EasyWhite компании Cree (англ.) . LEDs Magazine. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  17. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии: журнал. - 2008. - № 1 .
  18. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии: журнал. - 2006. - № 3 .
  19. Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  20. Срок службы белых светодиодов (англ.) . U.S. Department of Energy. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  21. Виды дефектов LED и методы анализа (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  22. , p. 61, 77-79.
  23. Светодиоды компании SemiLEDs (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  24. GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.) . LED Professional. Дата обращения 10 ноября 2012.
  25. Технология изолированного люминофора компании Cree (англ.) . LED Professional. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.
  26. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника: журнал. - 2011. - № 5 . - С. 28-33 .
  27. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект: XII Всероссийское совещание: материалы докладов. - Томск: СПБ Графикс, 2011. - С. 74-77 .
  28. , p. 424.
  29. Отражатели для светодиодов на основе фотонных кристаллов (англ.) . Led Professional. Дата обращения 16 февраля 2013. Архивировано 13 марта 2013 года.
  30. XLamp XP-G3 (англ.) . www.cree.com. Дата обращения 31 мая 2017.
  31. Белые светодиоды с высоким световым выходом для нужд освещения (англ.) . Phys.Org™. Дата обращения 10 ноября 2012. Архивировано 22 ноября 2012 года.

Белый светодиод

Мощный белый светодиод

Различают два вида белых светодиодов:

  • Многокристальные светодиоды, чаще - трехкомпонентные (RGB -светодиоды), имеющие в своём составе три полупроводниковых излучателя красного, зелёного и синего свечения, объединённые в одном корпусе.
  • Люминофорные светодиоды, создаваемые на основе ультрафиолетового или синего светодиода , имеющие в своем составе слой специального люминофора, преобразующего в результате фотолюминесценции часть излучения светодиода в свет в относительно широкой спектральной полосе с максимумом в области жёлтого (наиболее распространенная конструкция). Излучение светодиода и люминофора, смешиваясь, дают белый свет различных оттенков.

История изобретения

Первые полупроводниковые излучатели красного цвета для промышленного использования были получены Н. Холоньяком в 1962 году. В начале 70-х годов появились светодиоды желтого и зеленого цвета свечения. Световой выход в начале малоэффективных устройств к 1990 году достиг уровня в один люмен . В 1993 году Суджи Накамура, инженер компании Nichia (Япония) создал первый синий светодиод высокой яркости. Практически сразу появились светодиодные RGB устройства, поскольку синий, красный и зеленый цвета позволяли получить любой цвет, в том числе и белый. Белые люминофорные светодиоды впервые появились в 1996 г. В дальнейшем, технология быстро развивалась и к 2005 году световой выход светодиодов достиг значения 100 лм/Вт и более. Появились светодиоды с различными оттенками свечения, качество света позволило конкурировать с лампами накаливания и с ставшими уже традиционными люминисцентными лампами. Началось использование светодиодных осветительных устройств в быту, в внутреннем и уличном освещении .

RGB светодиоды

Белый свет может быть создан путем смешивания излучений светодиодов различного цвета. Наиболее распространена трихроматическая конструкция из красного (R), зелёного (G) и синего (B) источников, хотя встречаются бихроматические, тетрахроматические и более многоцветные варианты. Многоцветный светодиод, в отличие от других RGB полупроводниковых излучателей (светильники, лампы , кластеры) имеет один законченный корпус, чаще всего аналогичный одноцветному светодиоду. Светодиодные чипы располагаются рядом друг с другом и используют одну общую линзу и отражатель . Поскольку полупроводниковые чипы имеют конечный размер и собственные диаграммы направленности , такие светодиоды чаще всего имеют неравномерные угловые цветовые характеристики . Кроме того, для получения правильного соотношения цветов зачастую недостаточно установить расчётный ток , поскольку световой выход каждого чипа неизвестен заранее и подвержен изменениям в процессе работы. Для установки нужных оттенков, RGB светильники иногда оснащают специальными регулирующими устройствами .

Спектр RGB светодиода определяется спектром составляющих его полупроводниковых излучателей и имеет ярко выраженную линейчатую форму. Такой спектр сильно отличается от спектра солнца, следовательно индекс цветопередачи RGB светодиода невысок. RGB-светодиоды позволяют легко и в широких пределах управлять цветом свечения путем изменения тока каждого светодиода, входящего в триаду , регулировать цветовой тон излучаемого ими белого света прямо в процессе работы - вплоть до получения отдельных самостоятельных цветов.

Многоцветные светодиоды имеют зависимость светового выхода и цвета от температуры за счет различных характеристик составляющих прибор излучающих чипов, что сказывается в незначительном изменении цвета свечения в процессе работы . Срок службы многоцветного светодиода определяется долговечностью полупроводниковых чипов, зависит от конструкции и чаще всего превышает срок службы люминофорных светодиодов.

Многоцветные светодиоды используются в основном для декоративной и архитектурной подсветки , в электронных табло и в видеоэкранах .

Люминофорные светодиоды

Спектр одного из вариантов люминофорного светодиода

Комбинирование синего (чаще) или ультрафиолетового (реже) полупроводникового излучателя и люминофорного конвертера позволяет изготовить недорогой источник света с неплохими характеристиками. Самая распространенная конструкция такого светодиода содержит синий полупроводниковый чип нитрида галлия , модифицированный индием (InGaN) и люминофор с максимумом переизлучения в области жёлтого цвета - иттрий -алюминиевый гранат, легированный трёхвалентным церием (ИАГ). Часть мощности исходного излучения чипа покидает корпус светодиода, рассеиваясь в слое люминофора, другая часть поглощается люминофором и переизлучается в области меньших значений энергии. Спектр переизлучения захватывает широкую область от красного до зелёного, однако результирующий спектр такого светодиода имеет ярко выраженный провал в области зелёного-синезелёного цвета.

В зависимости от состава люминофора, выпускаются светодиоды с разной цветовой температурой («тёплые» и «холодные»). Путем комбинирования различных типов люминофоров, достигается значительное увеличение индекса цветопередачи (CRI или R a) , что позволяет говорить о возможности применения светодиодного освещения в критических для качества цветопередачи условиях.

Один из путей увеличения яркости люминофорных светодиодов при сохранении или даже снижении их стоимости - увеличение тока через полупроводниковый чип без увеличения его размеров - увеличение плотности тока . Такой метод связан с одновременным повышением требований к качеству самого чипа и к качеству теплоотвода. С увеличением плотности тока, электрические поля в объеме активной области снижают световой выход . При достижении предельных токов, поскольку участки светодиодного чипа с различной концентрацией примеси и разной шириной запрещённой зоны проводят ток по-разному , происходит локальный перегрев участков чипа, что влияет на световой выход и долговечность светодиода в целом. В целях увеличения выходной мощности при сохранении качества спектральных характеристик, теплового режима, выпускаются светодиоды, содержащие кластеры светодиодных чипов в одном корпусе.

Одна из самых обсуждаемых тем в области технологии полихромных светодиодов - это их надёжность и долговечность. В отличие от многих других источников света, светодиод с течением времени меняет свои характеристики светового выхода (эффективности), диаграммы направленности, цветовой оттенок, но редко выходит из строя полностью. Поэтому для оценки срока полезного использования принимают, например для освещения, уровень снижения светотдачи до 70% от первоначального значения (L70) . То есть, светодиод, яркость которого в процессе эксплуатации снизалась на 30% считается вышедшим из строя. Для светодиодов, используемых в декоративной подсветке используется в качестве оценки срока жизни уровень снижения яркости 50% (L50).

Срок службы люминофорного светодиода зависит от многих параметров . Кроме качества изготовления самой светодиодной сборки (способа крепления чипа на кристаллодержателе, способа крепления токоподводящих проводников, качества и защитных свойств герметизирующих материалов), время жизни в основном зависит от особенностей самого излучающего чипа и от изменения свойств люминофора с течением наработки (деградация). Причём, как показывают многочисленные исследования, основным фактором влияния на срок службы светодиода считается температура.

Влияние температуры на срок службы светодиода

Полупроводниковый чип в процессе работы часть электрической энергии излучает в виде излучения , часть в виде тепла . При этом, в зависимости от эффективности такого преобразования, количество тепла составляет около половины для самых эффективных излучателей или более. Сам полупроводниковый материал обладает невысокой теплопроводностью , кроме того, материалы и конструкция корпуса обладают определенной неидеальной тепловой проводимостью, что приводит к разогреву чипа до высоких (для полупроводниковой структуры) температур. Современные светодиоды работают при температурах чипа в районе 70-80 градусов. И дальнейшее увеличение этой температуры при использовании нитрида галлия, недопустимо. Высокая температура приводит к увеличению количества дефектов в активном слое, приводит к повышенной диффузии , изменению оптических свойств подложки. Всё это приводит к увеличению процента безизлучательной рекомбинации и поглощению фотонов материалом чипа. Увеличение мощности и долговечности достигается усовершенствованием как самой полупроводниковой структуры (снижение локального перегрева), так и развитием конструкции светодиодной сборки, улучшением качества охлаждения активной области чипа. Также, проводятся исследования с другими полупроводниковыми материалами или подложками .

Люминофор также подвержен действию высокой температуры. При длительном воздействии температуры переизлучательные центры ингибируются и коэффициент преобразования, а также спектральные характеристики люминофора ухудшаются. В первых и некоторых современных конструкциях полихромных светодиодов люминофор наносится прямо на полупроводниковый материал и тепловое воздействие максимально. Кроме мер по снижению температуры излучающего чипа, производители используют различные способы снижения влияния температуры чипа на люминофор. Технологии изолированного люминофора и конструкции светодиодных ламп, в которых люминофор физически отделен от излучателя позволяют увеличить срок службы источника света.

Корпус светодиода, изготавливаемый из оптически прозрачной кремнийорганической пластмассы или эпоксидной смолы, подвержен старению под воздействием температуры и со временем начинает тускнеть и желтеть, поглощая часть излучаемой светодиодом энергии. Отражающие поверхности также портятся при нагреве - вступают во взаимодействие с другими элементами корпуса, подвержены коррозии. Все эти факторы в совокупности приводят к тому, что яркость и качество излучаемого света постепенно снижается. Однако, этот процесс можно успешно замедлить, обеспечивая эффективный теплоотвод.

Конструкция люминофорных светодиодов

Схема одной из конструкций белого светодиода. MPCB - печатная плата с высокой тепловой проводимостью.

Современный люминофорный светодиод - это сложное устройство, объединяющее много оригинальных и уникальных технических решений. Светодиод имеет несколько основных элементов, каждый из которых выполняет важную, зачастую не одну функцию :

Все элементы конструкции светодиода испытывают тепловые нагрузки и должны быть подобраны с учетом степени их теплового расширения. И немаловажным условием хорошей конструкции является технологичность и низкая стоимость сборки светодиодного прибора и монтажа его в светильник.

Яркость и качество света

Самым важным параметром считается даже не яркость светодиода, а его cветовая отдача , то есть световой выход с каждого Ватта потреблённой светодиодом электрической энергии. Световая отдача современных светодиодов достигает 150-170 лм/Вт. Теоретический предел технологии оценивается в 260-300 лм/Вт . При оценке необходимо учитывать, что эффективность светильника на базе светодиодов существенно ниже за счет КПД источника питания, оптических свойств рассеивателя, отражателя и других элементов конструкции. Кроме того, производители зачастую указывают начальную эффективность излучателя при нормальной температуре. Тогда как температура чипа в процессе работы значительно выше. Это приводит к тому, что реальная эффективность излучателя ниже на 5 - 7%, а светильника зачастую - вдвое.

Второй не менее важный параметр - качество производимого светодиодом света. Для оценки качества цветопередачи существует три параметра:

Люминофорный светодиод на базе ультрафиолетового излучателя

Кроме уже ставшего распространённым варианта комбинации голубого светодиода и ИАГ, развивается также конструкция на базе ультрафиолетового светодиода. Полупроводниковый материал, способный излучать в близкой ультрафиолетовой области , покрывают несколькими слоями люминофора на базе европия и сульфида цинка, активированного медью и алюминием. Такая смесь люминофоров дает максимумы переизлучения в районе зелёной, синей и красной областей спектра. Полученный белый свет обладает весьма хорошими характеристиками качества, однако эффективность такого преобразования пока невелика.

Достоинства и недостатки люминофорных светодиодов

Учитывая высокую стоимость светодиодных источников освещения по сравнению с традиционными лампами, необходимы веские причины для использования таких устройств :

  • Основное преимущество белых светодиодов - высокий КПД. Низкое удельное энергопотребление позволяет применять их в длительно работающих источниках автономного и аварийного освещения .
  • Высокая надежность и длительный срок службы позволяют говорить о возможной экономии на замене ламп. Кроме того, использование светодиодных источников света в труднодоступных местах и уличных условиях позволяет снизить затраты на обслуживание. В совокупности с высокой эффективностью, можно сказать о существенной экономии средств при использовании светодиодного освещения в некоторых применениях.
  • Малый вес и размер устройств. Светодиоды отличаются малыми габаритами и пригодны для использования в труднодоступных местах и малогабаритных переносных устройствах.
  • Отсутствие ультрафиолетового и инфракрасного излучения в спектре позволяет использовать светодиодное освещение без вреда для человека и в специальных целях (например для освещения раритетных книг или других подверженных влиянию света предметов).
  • Отличная работа при отрицательных температурах без снижения, а зачастую и с улучшением параметров. Большинство типов светодиодов показывают бо́льшую эффективность и долговечность при снижении температуры, однако устройства питания, управления и элементы конструкции могут иметь противоположную зависимость.
  • Светодиоды - безинерционные источники света, они не требуют времни на прогрев или выключение, как например люминесцентные лампы и количество циклов включения и выключения не оказывает негативного влияния на их надежность.
  • Хорошая механическая прочность позволяет использовать светодиоды в тяжёлых условиях эксплуатации.
  • Легкость регулирования мощности как скважностью , так и регулированием тока питания без снижения параметров эффективности и надёжности.
  • Безопасность использования, нет опасности поражения электрическим током за счет низкого питающего напряжения.
  • Низкая пожароопасность, возможность использования в условиях взрывоопасности и опасности возгорания за счет отсутствия накальных элементов.
  • Влагостойкость, стойкость к воздействию агрессивных сред.
  • Химическая нейтральность, отсутствие вредных выбросов и отсутствие специальных требований к процедурам утилизации.

Но есть и недостатки:

Светодиоды освещения обладают также особенностями, присущими всем полупроводниковым излучателям, учитывая которые, можно найти наиболее удачное применение, например направленность излучения. Светодиод светит только в одну сторону без применения дополнительных отражателей и рассеивателей. Светодиодные светильники наилучшим образом подходят для местного и направленного освещения.

Перспективы развития технологии белых светодиодов

Технологии изготовления светодиодов белого цвета, пригодных для целей освещения находятся в стадии активного развития. Исследования в этой области стимулируются повышенным интересом со стороны общества. Перспективы значительной экономии энергии привлекают инвестиции в сферу изучения процессов, развития технологии и поиска новых материалов. Судя по публикациям производителей светодиодов и сопутствующих материалов, специалистов в области полупроводников и светотехники, можно обозначить пути развития в этой области:

См. также

Примечания

  1. , p. 19-20
  2. Светодиоды MC-E компании Cree, содержащие красный, зелёный, голубой и белый излучатели (англ.) . LED Professional. Архивировано
  3. Светодиоды VLMx51 компании Vishay, содержащие красный, оранжевый, жёлтый и белый излучатели (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  4. Многоцветные светодиоды XB-D и XM-L компании Cree (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  5. Светодиоды XP-C компании Cree, содержащие шесть монохроматических излучателей (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  6. Никифоров С. «S-класс» полупроводниковой светотехники // Компоненты и технологии : журнал. - 2009. - № 6. - С. 88-91.
  7. Трусон П. Халвардсон Э. Преимущества RGB-светодиодов для осветительных приборов // Компоненты и технологии : журнал. - 2007. - № 2.
  8. , p. 404
  9. Никифоров С. Температура в жизни и работе светодиодов // Компоненты и технологии : журнал. - 2005. - № 9.
  10. Светодиоды для интерьерной и архитектурной подсветки (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  11. Сян Лин Ун (Siang Ling Oon) Светодиодные решения для систем архитектурной подсветки // : журнал. - 2010. - № 5. - С. 18-20.
  12. Светодиоды RGB для использования в электронных табло (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  13. Туркин А. Нитрид галлия как один из перспективных материалов в современной оптоэлектронике // Компоненты и технологии : журнал. - 2011. - № 5.
  14. Светодиоды с высокими значениями CRI (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  15. Технология EasyWhite компании Cree (англ.) . LEDs Magazine. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  16. Никифоров С., Архипов А. Особенности определения квантового выхода светодиодов на основе AlGaInN и AlGaInP при различной плотности тока через излучающий кристалл // Компоненты и технологии : журнал. - 2008. - № 1.
  17. Никифоров С. Теперь электроны можно увидеть: светодиоды делают электрический ток очень заметным // Компоненты и технологии : журнал. - 2006. - № 3.
  18. Светодиоды с матричным расположением большого количества полупроводниковых чипов (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  19. Срок службы белых светодиодов Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  20. Виды дефектов LED и методы анализа (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  21. , p. 61, 77-79
  22. Светодиоды компании SemiLEDs (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  23. GaN-on-Si Программа исследований светодиодов на кремниевой основе (англ.) . LED Professional. Проверено 10 ноября 2012.
  24. Технология изолированного люминофора компании Cree (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  25. Туркин А. Полупроводниковые светодиоды: история, факты, перспективы // Полупроводниковая светотехника : журнал. - 2011. - № 5. - С. 28-33.
  26. Иванов А. В., Фёдоров А. В., Семёнов С. М. Энергосберегающие светильники на основе высокоярких светодиодов // Энергообеспечение и энергосбережение – региональный аспект : XII Всероссийское совещание: материалы докладов. - Томск: СПБ Графикс, 2011. - С. 74-77.
  27. , p. 424
  28. Белые светодиоды с высоким световым выходом для нужд освещения (англ.) . Phys.Org™. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  29. Основы светодиодного освещения (англ.) . U.S. Department of Energy. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  30. Шаракшанэ А. Шкалы оценки качества спектрального состава света - CRI и CQS // Полупроводниковая светотехника : журнал. - 2011. - № 4.
  31. Ультрафиолетовые светодиоды SemiLED с длиной волны 390-420 нм. (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  32. , p. 4-5
  33. Системы активного охлаждения кампании Nuventix (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  34. Н.П.Сощин Современные фотолюминофоры для эффективных приборов твердотельного освещения. Материалы конференции. (рус.) (february 1, 2010). Архивировано
  35. О.Е.Дудукало, В.А.Воробьев (рус.) (may 31, 2011). Архивировано из первоисточника 27 октября 2012.
  36. Тесты ускоренной температурной деградации люминофоров (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  37. Research and Markets Releases New 2012 Report on LED Phosphor Materials (англ.) . LED Professional. Архивировано из первоисточника 10 декабря 2012. Проверено 30 ноября 2012.
  38. Intematix представил набор люминофоров для качественной цветопередачи (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  39. Lumi-tech предложил SSE люминофор для белых светодиодов (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  40. Красный фосфор от компании Intematix (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  41. Светодиоды на квантовых точках (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  42. Прототип красного всетодиода с длиной волны 609 нм компании Osram с эффективностью 61 % (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  43. Переход на структуру GaN-on-Si (англ.) . LED Professional. Архивировано из первоисточника 23 ноября 2012. Проверено 10 ноября 2012.
  44. Tim Whitaker Joint venture to make ZnSe white LEDs (англ.) (December 6, 2002). Архивировано из первоисточника 27 октября 2012. Проверено 10 ноября 2012.
  45. , p. 426

Литература

  • Шуберт Ф.Е. Светодиоды. - М .: Физматлит, 2008. - 496 с. - ISBN 978-5-9221-0851-5
  • Вейнерт Д. Светодиодное освещение: Справочник . - Philips, 2010. - 156 с. - ISBN 978-0-615-36061-4

Ссылки

  • Сайт департамента энергетики США о светодиодном освещении
  • Led Professional. Научно-технический журнал о светодиодах и светодиодном освещении, Австрия
  • LEDs Magazine. Научно-технический журнал о светодиодах и светодиодном освещении. США
  • Полупроводниковая светотехника. Российский журнал о светодиодах и светодиодном освещении
Поделиться