Мощный понижающий преобразователь напряжения dc. Простенький регулируемый DC-DC преобразователь, или лабораторный блок питания своими руками V2

Двухтактный генератор импульсов, в котором за счет пропорционального токового управления транзисторами существенно уменьшены потери на их переключение и повышен КПД преобразователя, собран на транзисторах VT1 и VT2 (КТ837К). Ток положительной обратной связи протекает через обмотки III и IV трансформатора Т1 и нагрузку, подключенную к конденсатору С2. Роль диодов, выпрямляющих выходное напряжение, выполняют эмиттерные переходы транзисторов.

Особенностью генератора является срыв колебаний при отсутствии нагрузки, что автоматически решает проблему управления питанием. Проще говоря, такой преобразователь будет сам включаться тогда, когда от него потребуется что-нибудь запитать, и выключаться, когда нагрузка будет отключена. То есть, батарея питания может быть постоянно подключена к схеме и практически не расходоваться при отключенной нагрузке!

При заданных входном UВx. и выходном UBыx. напряжениях и числе витков обмоток I и II (w1) необходимое число витков обмоток III и IV (w2) с достаточной точностью можно рассчитать по формуле: w2=w1 (UВых. - UBх. + 0,9)/(UВx - 0,5). Конденсаторы имеют следующие номиналы. С1: 10-100 мкф, 6.3 В. С2: 10-100 мкф, 16 В.

Транзисторы следует выбирать, ориентируясь на допустимые значения тока базы (он не должен быть меньше тока нагрузки!!! ) и обратного напряжения эмиттер - база (оно должно быть больше удвоенной разности входного и выходного напряжений!!! ) .

Модуль Чаплыгина я собрал для того, чтобы сделать устройство для подзарядки своего смартфона в походных условиях, когда смартфон нельзя зарядить от розетки 220 В. Но увы... Максимум, что удалось выжать, используя 8 батареек соединенных параллельно, это около 350-375 мА зарядного тока при 4.75 В. выходного напряжения! Хотя телефон Nokia моей жены удается подзаряжать таким устройством. Без нагрузки мой Модуль Чаплыгина выдает 7 В. при входном напряжении 1.5 В. Он собран на транзисторах КТ837К.

На фото выше изображена псевдокрона, которую я использую для питания некоторых своих устройств, требующих 9 В. Внутри корпуса от батареи Крона находится аккумулятор ААА, стерео разъем, через который он заряжается, и преобразователь Чаплыгина. Он собран на транзисторах КТ209.

Трансформатор T1 намотан на кольце 2000НМ размером К7х4х2, обе обмотки наматывают одновременно в два провода. Чтобы не повредить изоляцию об острые наружные и внутренние грани кольца притупите их, скруглив острые края наждачной бумагой. Вначале мотаются обмотки III и IV (см. схему) которые содержат по 28 витков провода диаметром 0,16мм затем, так же в два провода, обмотки I и II которые содержат по 4 витка провода диаметром 0,25мм.

Удачи и успехов всем, кто решится на повторение преобразователя! :)

Компания STMicroelectronics выпускает микросхемы для создания неизолированных DC/DC-преобразователей с высокими качественными показателями, требующие небольшого количества внешних компонентов.

Постоянное развитие ИС для DC/DC-преобразователей характеризуется следующими факторами:

  • повышением рабочих частот преобразования (максимальная частота преобразования для микросхем STMicroelectronics составляет 1,7МГц), что позволяет резко уменьшить размеры внешних компонентов и минимизировать площадь печатной платы;
  • уменьшением размеров корпусов микросхем благодаря высоким частотам преобразования (корпус DFN6D имеет размеры всего 3х3мм);
  • повышением удельной плотности выходного тока (корпус DFN6D обеспечивает выходной ток до 2,0А; корпуса DFN8 и PowerSO-8 могут работать при токах до 3,0А);
  • повышением КПД и снижением потребляемой мощности при отключенном состоянии, что особенно важно для приборов с автономным питанием.

Компания STM разделяет свои микросхемы для неизолированных DC/DC-преобразователей на две группы. Первая группа имеет рабочую частоту до 1 МГц (параметры сведены в таблицу 1), вторая группа — с частотой преобразования 1,5 и 1,7 МГц (параметры см. в таблице 2). Во вторую группу добавлены также и микросхемы серии ST1S10 с номинальной частотой преобразования 0,9 МГц (максимальная частота преобразования для этих микросхем может достигать 1,2 МГц). Микросхемы серии ST1S10 могут работать при синхронизации от внешнего генератора в диапазоне частот от 400 кГц до 1,2 МГц.

Таблица 1. Микросхемы STMicroelectronics для DC/DC-преобразователей с частотой преобразования до 1 МГц

Наименование Топология Vвх., В Vвых., В Iвых., А Частота
преобразования, МГц
Вход
отключения
Корпус
L296 Step-down 9…46 5,1…40 4 до 200 Есть MULTIWATT-15
L4960 Step-down 9…46 5,1…40 2,5 до 200 Нет HEPTAWATT-7
L4962 Step-down 9…46 5,1…40 1,5 до 200 Есть HEPTAWATT-8, DIP-16
L4963 Step-down 9…46 5,1…40 1,5 42…83 Нет DIP-18, SO-20
L4970A Step-down 12…50 5,1…50 10 до 500 Нет MULTIWATT-15
L4971 Step-down 8…55 3,3…50 1,5 до 300 Есть DIP-8, SO-16W
L4972A Step-down 12…50 5,1…40 2 до 200 Нет DIP-20, SO-20
L4973D3.3 Step-down 8…55 0,5…50 3,5 до 300 Есть DIP-8, SO-16W
L4973D5.1 Step-down 8…55 5,1…50 3,5 до 300 Есть DIP-8, SO-16W
L4974A Step-down 12…50 5,1…40 3,5 до 200 Нет MULTIWATT-15
L4975A Step-down 12…50 5,1…40 5 до 500 Нет MULTIWATT-15
L4976 Step-down 8…55 0,5…50 1 до 300 Есть DIP-8, SO-16W
L4977A Step-down 12…50 5,1…40 7 до 500 Нет MULTIWATT-15
L4978 Step-down 8…55 3,3…50 2 до 300 Есть DIP-8, SO-16W
L5970AD Step-down 4,4…36 0,5…35 1 500 Есть SO-8
L5970D Step-down 4,4…36 0,5…35 1 250 Есть SO-8
L5972D Step-down 4,4…36 1,23…35 1,5 250 Нет SO-8
L5973AD Step-down 4,4…36 0,5…35 1,5 500 Есть HSOP-8
L5973D Step-down 4,4…36 0,5…35 2 250 Есть HSOP-8
L5987A Step-down 2,9…18 0,6…Vвх. 3 250…1000 Есть HSOP-8
L6902D Step-down 8…36 0,5…34 1 250 Нет SO-8
L6920D Step-up 0,6…5,5 2…5,2 1 до 1000 Есть TSSOP-8
L6920DB Step-up 0,6…5,5 1,8…5,2 0,8 до 1000 Есть miniSO-8

Таблица 2. Микросхемы для понижающих DC/DC-преобразователей с частотой преобразования от 0,9 до 1,7 МГц

Серия Наименование Iвых., А Vвх.,В Vвых., В Частота
преобразования, МГц
Вход
отключения
Корпус
ST1S03 ST1S03PUR 1,5 3…16 0,8…12 1,5 Нет DFN6D (3х3 мм)
ST1S03A ST1S03AIPUR 3…5.5 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S03APUR 1,5 Нет
ST1S06 ST1S06PUR 2,7…6 0,8…5.5 1,5 Есть DFN6D (3х3 мм)
ST1S06A ST1S06APUR 1,5 Нет
ST1S06xx12 ST1S06PU12R 2,7…6 1,2 1,5 Есть DFN6D (3×3 мм)
ST1S06xx33 ST1S06PU33R 3,3 1,5 Есть
ST1S09 ST1S09IPUR 2,0 2,7…5,5 0,8…5 1,5 Есть DFN6D (3х3 мм)
ST1S09PUR 1,5 Нет
ST1S10 ST1S10PHR 3,0 2,5…18 0,8…0,85Vвх. 0,9 (0,4…1,2)* Есть PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
ST1S12xx ST1S12GR 0,7 2,5…5,5 1,2…5 1,7 Есть TSOT23-5L
ST1S12xx12 ST1S12G12R 1,2
ST1S12xx18 ST1S12G18R 1,8
* - в скобках указан диапазон частот преобразования при синхронизации от внешнего генератора.

Основная часть микросхем для DC/DC-преобразователей из таблицы 1 имеет частоту преобразования до 300 кГц. На таких частотах облегчается выбор индуктивностей на выходе DC/DC, т. к. для рабочих частот микросхем из таблицы 2 (1,5 и 1,7 МГц) на частотные характеристики индуктивностей необходимо обращать особое внимание. На рисунках 1 и 2 в качестве примеров приведены рекомендуемые производителем схемы включения микросхем L5973D (выходной ток до 2,0 А при частоте преобразования 250 кГц) и ST1S06 (выходной ток до 1,5 А при частоте преобразования 1,5 МГц).

Рис. 1.


Рис. 2.

Из рисунков 1 и 2 видно, что микросхемы с относительно низкими частотами преобразования по современным меркам требуют большего количества внешних электронных компонентов, имеющих увеличенные размеры по сравнению с компонентами преобразователей, работающих на частотах более 1 МГц. Микросхемы для DC/DC из таблицы 2 обеспечивают гораздо меньшие размеры печатной платы, но необходимо более внимательно относиться к разводке проводников для уменьшения излучаемых электромагнитных помех.

Некоторые микросхемы позволяют управлять включением и выключением конвертеров благодаря наличию входа INHIBIT. Пример включения таких микросхем приведен на рис. 3. ST1S09 (без входа INHIBIT) и ST1S09I (с входом INHIBIT). В нижней части этого рисунка приведены рекомендуемые значения номиналов резисторов R1 и R2 для формирования выходных напряжений 1,2 и 3,3 В.

Рис. 3.

При наличии на входе управления VINH высокого уровня напряжения (более 1,3 В) микросхема ST1S09I находится в активном состоянии; при напряжении на этом входе менее 1,4 В DC/DC-преобразователь отключается (собственное потребление при этом составляет менее 1 мкА). Вариант микросхемы без входа управления на выводе 6 вместо входа VINH имеет выход «PG = Power Good» (питание в норме). Формирование сигнала «Power Good» проиллюстрировано на рис. 4. Когда на входе «FB» (FeedBack или вход обратной связи) достигается значение 0,92хVFB, происходит переключение компаратора, и на выходе PG формируется высокий уровень напряжения, информирующий о том, что выходное напряжение находится в допустимых пределах.


Рис. 4.

Эффективность преобразования
на примере микросхем ST1S09 и ST1S09I

Эффективность понижающего DC/DC-преобразователя сильно зависит от параметров интегрированных в микросхемы транзисторов с изолированным затвором (MOSFET), выполняющих роль ключа. Одна из проблем высокочастотных преобразователей связана с током заряда затвора транзистора при управлении им с помощью ШИМ-контроллера. Потери в этом случае практически не зависят от тока в нагрузке. Вторая проблема, снижающая КПД, — рассеиваемая в транзисторе мощность во время переключения из одного состояния в другое (в эти промежутки времени транзистор работает в линейном режиме). Уменьшить потери можно, обеспечив более крутые фронты переключения, но это повышает электромагнитные шумы и помехи по цепям питания. Еще одна причина снижения КПД преобразователя — наличие активного сопротивления «сток — исток» (Rdson). В правильно спроектированной схеме КПД достигает максимального значения при равенстве статических (омических) и динамических потерь. Следует учесть, что выходной выпрямительный диод также вносит свою долю динамических и статических потерь. Некорректно выбранная индуктивность на выходе DC/DC-преобразователя может дополнительно существенно снизить эффективность преобразования, что заставляет помнить и об ее высокочастотных свойствах. В самом плохом случае на высоких частотах преобразования выходной дроссель может потерять свои индуктивные свойства, и преобразователь просто не будет работать.

Компания STMicroelectronics уже много лет выпускает мощные полевые транзисторы и диоды с очень высокими динамическими и статическими характеристиками. Обладание отлаженной технологией производства транзисторов MOSFET позволяет компании интегрировать свои полевые транзисторы в микросхемы для DC/DC-преобразователей и достигать высоких значений КПД преобразования.

На рис. 5 (а, б, в) в качестве примера приведены типовые зависимости эффективности преобразования от некоторых параметров при разных условиях работы. Графики зависимости КПД от величины выходного тока достигают максимальных значений около 95% при токе 0,5 А. Далее спад этих характеристик довольно пологий, что характеризует лишь небольшое увеличение потерь при росте выходного тока до максимального значения.


Рис. 5а.

На рис. 5б показаны зависимости КПД от уровня выходного напряжения DC/DC-преобразователей на микросхемах ST1S09 и ST1S09I. С ростом выходного напряжения КПД возрастает. Это объясняется тем, что падение напряжения на транзисторах выходного каскада практически не зависит от выходного напряжения при неизменном выходном токе, поэтому с ростом выходного напряжения процент вносимых потерь будет уменьшаться.


Рис. 5б.

На рис. 5в приведены зависимости КПД от величины индуктивности на выходе. В диапазоне от 2 до 10 мкГн эффективность преобразования практически не изменяется, что позволяет выбирать величину индуктивности из широкого диапазона номиналов. Конечно, нужно стремиться к максимально возможному уровню индуктивности для обеспечения лучшей фильтрации напряжения пульсаций выходного тока. Понятно, что с ростом значений выходного тока КПД уменьшается. Это объясняется ростом потерь в выходных каскадах DC/DC-преобразователей.


Рис. 5в.

Сравнение с микросхемами других производителей

В таблицах 3, 4 и 5 приведены параметры близких по функциональному значению микросхем от других производителей.

Из таблицы 3 видно, что FAN2013MPX — это полный аналог для микросхемы ST1S09IPUR, но у компании STMicroelectronics дополнительно в этой серии есть микросхема ST1S09PUR с наличием выхода «Power Good», что расширяет выбор разработчика.

Таблица 3. Близкие замены микросхем для DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Частота
преобразования, МГц
Power Good Совместимость
по выводам
Корпус
STMicroelectronics ST1S09PUR 2 1,5 Есть Есть DFN3x3-6
ST1S09IPUR Нет Есть
Fairchild Semiconductor FAN2013MPX 2 1,3 Нет Есть DFN3x3-6

В таблице 4 приведены функциональные замены (нет совместимости по выводам) от других производителей для микросхем ST1S10. Основное преимущество микросхем ST1S10 — наличие синхронного выпрямления в выходных каскадах, что обеспечивает более высокий КПД преобразования. Кроме того, корпус DFN8 (4х4 мм) имеет меньшие размеры по сравнению с корпусами функционально близких микросхем других производителей. Внутренняя схема компенсации позволяет сократить количество внешних компонентов обвязки микросхем.

Таблица 4. Близкие замены микросхем ST1S10PxR для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых макс., А Синхронное выпрямление Компенсация Мягкий запуск Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S10PHR 3 Есть Внутренняя Внутренний - PowerSO-8
ST1S10PUR DFN8 (4×4 мм)
Monolithic Power Systems MP2307/MP1583 3 Есть/Нет Внешняя Внешний Нет SO8-EP
Alpha & Omega Semiconductor AOZ1013 3 Нет Внешняя Внутренний Нет SO8
Semtech SC4521 3 Нет Внешняя Внешний Нет SO8-EP
AnaChip AP1510 3 Нет Внутренняя Внутренний Нет SO8

В таблице 5 показаны возможные замены для микросхем ST1S12. Основное преимущество микросхем ST1S12 — большее значение максимально допустимого выходного тока: до 700 мА. Микросхема MP2104 фирмы MPS совместима по выводам с микросхемой ST1S12. Микросхемы LM3674 и LM3671 можно рассматривать только в качестве близкой функциональной замены для ST1S112 из-за отсутствия совместимости по выводам.

Таблица 5. Близкие замены микросхем ST1S12 для понижающих DC/DC-преобразователей от других производителей

Производитель Наименование Iвых
(макс.), мА
Частота
преобразования, МГц
Vвх (макс.), В Вход
отключения
Совмести- мость
по выводам
Корпус
STMicroelectronics ST1S12 700 1,7 5,5 есть - TSOT23-5L
Monolithic Power Systems MP2104 600 1,7 6 есть есть TSOT23-5L
National Semiconductor LM3674 600 2 5,5 есть нет SOT23-5L
LM3671 600 2 5,5 есть нет SOT23-5L

Выбор микросхем для
DC/DC-преобразователей на сайте

Для быстрого поиска электронных компонентов по известным параметрам удобнее всего воспользоваться сайтом . Для параметрического поиска на этом сайте настоятельно рекомендуется установить и использовать бесплатную программу для просмотра сайтов (браузер) «Google Chrome». Работа в этом браузере ускоряет поиск в несколько раз. Микросхемы для DC/DC-преобразователей компании STMicroelectronics можно найти на сайте по следующему пути: «Управление питанием» ® «ИМС для DC/DC» ® «Регуляторы (+ключ)». Далее можно выбрать бренд «ST» и активировать фильтр «Склад» для выбора только тех компонентов, которые имеются на складе. Результат этих действий показан на рис. 6. Можно сделать более конкретную выборку по требуемым параметрам, применяя другие фильтры.

Заключение

Особенно важен правильный выбор микросхем для DC/DC-преобразователей в приборах с автономными источниками питания. В некоторых случаях выбор подходящей схемы питания может оказаться трудной задачей, но, уделив достаточно времени проработке и выбору схемы электропитания устройства, можно добиться определенного преимущества над конкурентами за счет более компактного и недорогого решения с более высокой эффективностью преобразования электрической энергии. Микросхемы для DC/DC-преобразователей STMicroelectronics облегчают выбор и позволяют реализовать заложенные в них преимущества при создании конкурентоспособных схем электропитания.

Получение технической информации, заказ образцов, поставка — e-mail:

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать - простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • - понижающие, повышающие, инвертирующие;
  • - стабилизированные, нестабилизированные;
  • - гальванически изолированные, неизолированные;
  • - с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы - они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка - 2х10 витков, вторичная обмотка - 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент - дроссель L1.


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД - 94%, ток нагрузки - до 200 мА.

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 - накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД - 90%.

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения, КПД - 98%.

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Индуктивность первичной обмотки трансформатора Т1 - 22 мкГн, отношение витков первичной обмотки к каждой вторичной - 1:2.5.

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 1), повышающие (рис. 2) и инвертирующие (рис. 3).

Общими для всех этих видов преобразователей являются пять элементов :

  1. источник питания,
  2. ключевой коммутирующий элемент,
  3. индуктивный накопитель энергии (катушка индуктивности, дроссель),
  4. блокировочный диод,
  5. конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий импульсный преобразователь

Понижающий преобразователь (рис. 1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки RH и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 1. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки RH, Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь

Повышающий импульсный преобразователь напряжения (рис. 2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки RH с параллельно подключенным конденсатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 2. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии.

Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.

Инвертирующий преобразователь импульсного типа

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки RH с конденсатором фильтра С1.

Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 3. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки Rн и конденсатор фильтра С1.

Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Импульсные преобразователи и стабилизаторы

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Узлы и схемы импульсных преобразователей

Задающий генератор (рис. 4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 5, 6) на микросхеме КР1006ВИ1 работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепоч-ки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%.

Рис. 4. Схема задающего генератора для импульсных преобразователей напряжения.

Рис. 5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В.

Рис. 6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В.

Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 5, 6) составляет 140 мА .

В выпрямителе преобразователя (рис. 5, 6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 — R3.

Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226).

В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х структуры п-р-п — КТ815, КТ817 (рис. 4.5) и р-п-р — КТ814, КТ816 (рис. 6) и другие.

Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер — коллектор транзистора диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Преобразователь с задающим генератором-мультивибратором

Для получения выходного напряжения величиной 30...80 В П. Беляцкий использовал преобразователь с задающим генератором на основе несимметричного мультивибратора с выходным каскадом, нагруженным на индуктивный накопитель энергии — катушку индуктивности (дроссель) L1 (рис. 7).

Рис. 7. Схема преобразователя напряжения с задающим генератором на основе несимметричного мультивибратора.

Устройство работоспособно в диапазоне питающих напряжений 1,0. ..1,5 В и имеет КПД до 75%. В схеме можно применить стандартный дроссель ДМ-0,4-125 или иной с индуктивностью 120.. .200 мкГн.

Вариант выполнения выходного каскада преобразователя напряжения показан на рис. 8. При подаче на вход каскада управляющих сигналов прямоугольной формы 7777-уровня (5 В) на выходе преобразователя при его питании от источника напряжением 12 В получено напряжение 250 В при токе нагрузки 3...5 мА (сопротивление нагрузки около 100 кОм). Индуктивность дросселя L1 — 1 мГн.

В качестве VT1 можно использовать отечественный транзистор, например, КТ604, КТ605, КТ704Б, КТ940А(Б), КТ969А и др.

Рис. 8. Вариант выполнения выходного каскада преобразователя напряжения.

Рис. 9. Схема выходного каскада преобразователя напряжения.

Аналогичная схема выходного каскада (рис. 9) позволила при питании от источника напряжением 28В и потребляемом токе 60 мА получить выходное напряжение 250 В при токе нагрузки 5 мА , Индуктивность дросселя — 600 мкГч. Частота управляющих импульсов — 1 кГц.

В зависимости от качества изготовления дросселя на выходе может быть получено напряжение 150...450 В при мощности около 1 Вт и КПД до 75%.

Преобразователь напряжения, выполненный на основе генератора импульсов на микросхеме DA1 КР1006ВИ1, усилителя на основе полевого транзистора VT1 и индуктивного накопителя энергии с выпрямителем и фильтром, показан на рис. 10.

На выходе преобразователя при напряжении питания и потребляемом токе 80...90 мА образуется напряжение 400...425 В . Следует отметить, что величина выходного напряжение не гарантирована — она существенно зависит от способа выполнения катушки индуктивности (дросселя) L1.

Рис. 10. Схема преобразователя напряжения с генератором импульсов на микросхеме КР1006ВИ1.

Для получения нужного напряжения проще всего экспериментально подобрать катушку индуктивности для достижения требуемого напряжения или использовать умножитель напряжения.

Схема двуполярного импульсного преобразователя

Для питания многих электронных устройств требуется источник двухполярного напряжения, обеспечивающий положительное и отрицательное напряжения питания. Схема, приведенная на рис. 11, содержит гораздо меньшее число компонентов, чем аналогичные устройства, благодаря тому, что она одновременно выполняет функции повышающего и инвертирующего индуктивного преобразователя.

Рис. 11. Схема преобразователя с одним индуктивным элементом.

Схема преобразователя (рис. 11) использует новое сочетание основных компонентов и включает в себя генератор четырехфазных импульсов, катушку индуктивности и два транзисторных ключа.

Управляющие импульсы формирует D-триггер (DD1.1). В течение первой фазы импульсов катушка индуктивности L1 запасается энергией через транзисторные ключи VT1 и VT2. В течение второй фазы ключ VT2 размыкается, и энергия передается на шину положительного выходного напряжения.

Во время третьей фазы замыкаются оба ключа, в результате чего катушка индуктивности вновь накапливает энергию. При размыкании ключа VT1 во время заключительной фазы импульсов эта энергия передается на отрицательную шину питания. При поступлении на вход импульсов с частотой 8 кГц схема обеспечивает выходные напряжения ±12 В . На временной диаграмме (рис. 11, справа) показано формирование управляющих импульсов.

В схеме можно использовать транзисторы КТ315, КТ361.

Преобразователь напряжения (рис. 12) позволяет получить на выходе стабилизированное напряжение 30 В. Напряжение такой величины используется для питания варикапов, а также вакуумных люминесцентных индикаторов.

Рис. 12. Схема преобразователя напряжения с выходным стабилизированным напряжением 30 В.

На микросхеме DA1 типа КР1006ВИ1 по обычной схеме собран задающий генератор, вырабатывающий прямоугольные импульсы с частотой около 40 кГц.

К выходу генератора подключен транзисторный ключ VT1, коммутирующий катушку индуктивности L1. Амплитуда импульсов при коммутации катушки зависит от качества ее изготовления.

Во всяком случае напряжение на ней достигает десятков вольт. Выходное напряжение выпрямляется диодом VD1. К выходу выпрямителя подключен П-образный RC-фильтр и стабилитрон VD2. Напряжение на выходе стабилизатора целиком определяется типом используемого стабилитрона. В качестве «высоковольтного» стабилитрона можно использовать цепочку стабилитронов, имеющих более низкое напряжение стабилизации.

Преобразователь напряжения с индуктивным накопителем энергии, позволяющий поддерживать на выходе стабильное регулируемое напряжение, показан на рис. 13.

Рис. 13. Схема преобразователя напряжения со стабилизацией.

Схема содержит генератор импульсов, двухкаскадный усилитель мощности, индуктивный накопитель энергии, выпрямитель, фильтр, схему стабилизации выходного напряжения. Резистором R6 устанавливают необходимое выходное напряжение в пределах от 30 до 200 В.

Аналоги транзисторов: ВС237В — КТ342А, КТ3102; ВС307В — КТ3107И, BF459—КТ940А.

Понижающие и инвертирующие преобразователей напряжения

Два варианта — понижающего и инвертирующего преобразователей напряжения показаны на рис. 14. Первый из них обеспечивает выходное напряжение 8,4 В при токе нагрузки до 300 мА , второй — позволяет получить напряжение отрицательной полярности (-19,4 В ) при таком же токе нагрузки. Выходной транзистор ѴТЗ должен быть установлен на радиатор.

Рис. 14. Схемы стабилизированных преобразователей напряжения.

Аналоги транзисторов: 2N2222 — КТЗ117А 2N4903 — КТ814.

Понижающий стабилизированный преобразователь напряжения

Понижающий стабилизированный преобразователь напряжения, использующий в качестве задающего генератора микросхему КР1006ВИ1 (DA1) и имеющий защиту потоку нагрузки, показан на рис. 15. Выходное напряжение составляет 10 В при токе нагрузки до 100 мА.

Рис. 15. Схема понижающего преобразователя напряжения.

При изменении сопротивления нагрузки на 1% выходное напряжение преобразователя изменяется не более чем на 0,5%. Аналоги транзисторов: 2N1613 — КТ630Г, 2N2905 — КТ3107Е, КТ814.

Двуполярный инвертор напряжения

Для питания радиоэлектронных схем, содержащих операционные усилители, часто требуются двухполярные источники питания. Решить эту проблему можно, использовав инвертор напряжения, схема которого показана на рис. 16.

Устройство содержит генератор прямоугольных импульсов, нагруженный на дроссель L1. Напряжение с дросселя выпрямляется диодом VD2 и поступает на выход устройства (конденсаторы фильтра С3 и С4 и сопротивление нагрузки). Стабилитрон VD1 обеспечивает постоянство выходного напряжения — регулирует длительность импульса положительной полярности на дросселе.

Рис. 16. Схема инвертора напряжения +15/-15 В.

Рабочая частота генерации — около 200 кГц под нагрузкой и до 500 кГц без нагрузки. Максимальный ток нагрузки — до 50 мА, КПД устройства — 80%. Недостатком конструкции является относительно высокий уровень электромагнитных помех, впрочем, характерный и для других подобных схем. В качестве L1 использован дроссель ДМ-0,2-200.

Инверторы на специализированных микросхемах

Наиболее удобно собирать высокоэффективные современные преобразователи напряжения , используя специально созданные для этих целей микросхемы.

Микросхема КР1156ЕУ5 (МС33063А, МС34063А фирмы Motorola) предназначена для работы в стабилизированных повышающих, понижающих, инвертирующих преобразователях мощностью в несколько ватт.

На рис. 17 приведена схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5. Преобразователь содержит входные и выходные фильтрующие конденсаторы С1, СЗ, С4, накопительный дроссель L1, выпрямительный диод VD1, конденсатор С2, задающий частоту работы преобразователя, дроссель фильтра L2 для сглаживания пульсаций. Резистор R1 служит датчиком тока. Делитель напряжения R2, R3 определяет величину выходного напряжения.

Рис. 17. Схема повышающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Частота работы преобразователя близка к 15 кГц при входном напряжении 12 В и номинальной нагрузке. Размах пульсаций напряжения на конденсаторах СЗ и С4 составлял соответственно 70 и 15 мВ.

Дроссель L1 индуктивностью 170 мкГн намотан на трех склеенных кольцах К12x8x3 М4000НМ проводом ПЭШО 0,5. Обмотка состоит из 59 витков. Каждое кольцо перед намоткой следует разломить на две части.

В один из зазоров вводят общую прокладку из текстолита толщиной 0,5 мм и склеивают пакет. Можно также применить кольца из феррита с магнитной проницаемостью свыше 1000.

Пример выполнения понижающего преобразователя на микросхеме КР1156ЕУ5 приведен на рис. 18. На вход такого преобразователя нельзя подавать напряжение более 40 В. Частота работы преобразователя — 30 кГц при UBX=15 В. Размах пульсаций напряжения на конденсаторах СЗ и С4 — 50 мВ.

Рис. 18. Схема понижающего преобразователя напряжения на микросхеме КР1156ЕУ5.

Рис. 19. Схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5.

Дроссель L1 индуктивностью 220 мкГч намотан аналогичным образом (см. выше) на трех кольцах, но зазор при склейке был установлен 0,25 мм, обмотка содержала 55 витков такого же провода.

На следующем рисунке (рис. 19) показана типовая схема инвертирующего преобразователя напряжения на микросхеме КР1156ЕУ5, Микросхема DA1 питается суммой входного и выходного напряжений, которая не должна превышать 40 В.

Частота работы преобразователя — 30 кГц при UBX=5 S; размах пульсаций напряжения на конденсаторах СЗ и С4 — 100 и 40 мВ.

Для дросселя L1 инвертирующего преобразователя индуктивностью 88 мкГн были использованы два кольца К12x8x3 М4000НМ с зазором 0,25 мм. Обмотка состоит из 35 витков провода ПЭВ-2 0,7. Дроссель L2 во всех преобразователях стандартный — ДМ-2,4 индуктивностью 3 мкГч. Диод VD1 во всех схемах (рис. 17 — 19) должен быть диодом Шотки.

Для получения двухполярного напряжения из однополярного фирмой MAXIM разработаны специализированные микросхемы. На рис. 20 показана возможность преобразования напряжения низкого уровня (4,5...5 6) в двухполярное выходное напряжение 12 (или 15 6) при токе нагрузки до 130 (или 100 мА).

Рис. 20. Схема преобразователя напряжения на микросхеме МАХ743.

По внутренней структуре микросхема не отличается от типового построения подобного рода преобразователей, выполненных на дискретных элементах, однако интегральное исполнение позволяет при минимальном количестве внешних элементов создавать высокоэффективные преобразователи напряжения.

Так, для микросхемы МАХ743 (рис. 20) частота преобразования может достигать 200 кГц (что намного превышает частоту преобразования подавляющего большинства преобразователей, выполненных на дискретных элементах). При напряжении питания 5 В КПД составляет 80...82% при нестабильности выходного напряжения не более 3%.

Микросхема снабжена защитой от аварийных ситуаций: при снижении питающего напряжения на 10% ниже нормы, а также при перегреве корпуса (выше 195°С).

Для снижения на выходе преобразователя пульсаций с частотой преобразования (200 кГц) на выходах устройства установлены П-образные LC-фильтры. Перемычка J1 на выводах 11 и 13 микросхемы предназначена для изменения величины выходных напряжений.

Для преобразования напряжения низкого уровня (2,0...4,5 6) в стабилизированное 3,3 или 5,0 В предназначена специальная микросхема, разработанная фирмой MAXIM, — МАХ765 . Отечественные аналоги — КР1446ПН1А и КР1446ПН1Б. Микросхема близкого назначения — МАХ757 — позволяет получить на выходе плавно регулируемое напряжение в пределах 2,7...5,5 В.

Рис. 21. Схема низковольтного повышающего преобразователя напряжения до уровня 3,3 или 5,0 В.

Схема преобразователя, показанная на рис. 21, содержит незначительное количество внешних (навесных) деталей.

Работает это устройство по традиционному принципу, описанному ранее. Рабочая частота генератора зависит от величины входного напряжения и тока нагрузки и изменяется в широких пределах — от десятков Гц до 100 кГц.

Величина выходного напряжения определяется тем, куда подключен вывод 2 микросхемы DA1: если он соединен с общей шиной (см. рис. 21), выходное напряжение микросхемы КР1446ПН1А равно 5,0±0,25 В, если же этот вывод соединен с выводом 6, то выходное напряжение понизится до 3,3±0,15 В. Для микросхемы КР1446ПН1Б значения будут 5,2±0,45 В и 3,44±0,29 В. соответственно.

Максимальный выходной ток преобразователя — 100 мА . Микросхема МАХ765 обеспечивает выходной ток 200 мА при напряжении 5-6 и 300 мА при напряжении 3,3 В . КПД преобразователя — до 80%.

Назначение вывода 1 (SHDN) — временное отключение преобразователя путем замыкания этого вывода на общий провод. Напряжение на выходе в этом случае понизится до значения, несколько меньшего, чем входное напряжение.

Светодиод HL1 предназначен для индикации аварийного снижения питающего напряжения (ниже 2 В), хотя сам преобразователь способен работать и при более низких значениях входного напряжения (до 1,25 6 и ниже).

Дроссель L1 выполняют на кольце К10x6x4,5 из феррита М2000НМ1. Он содержит 28 витков провода ПЭШО 0,5 мм и имеет индуктивность 22 мкГч. Перед намоткой ферритовое кольцо разламывают пополам, предварительно надпилив алмазным надфилем. Затем кольцо склеивают эпоксидным клеем, установив в один из образовавшихся зазоров текстолитовую прокладку толщиной 0,5 мм.

Индуктивность полученного таким образом дросселя зависит в большей степени от толщины зазора и в меньшей — от магнитной проницаемости сердечника и числа витков катушки. Если смириться с увеличением уровня электромагнитных помех, то можно использовать дроссель типа ДМ-2,4 индуктивностью 20 мкГч.

Конденсаторы С2 и С5 типа К53 (К53-18), С1 и С4 — керамические (для снижения уровня высокочастотных помех), VD1 — диод Шотки (1 N5818, 1 N5819, SR106, SR160 и др.).

Сетевой блок питания фирмы «Philips»

Преобразователь (сетевой блок питания фирмы «Philips», рис. 22) при входном напряжении 220 В обеспечивает выходное стабилизированное напряжение 12 В при мощности нагрузки 2 Вт.

Рис. 22. Схема сетевого блока питания фирмы «Philips».

Бестрансформаторный источник питания (рис. 23) предназначен для питания портативных и карманных приемников от сети переменного тока напряжением 220 В. Следует учитывать, что этот источник электрически не изолирован от питающей сети. При выходном напряжении 9В и токе нагрузки 50 мА источник питания потребляет от сети около 8 мА.

Рис. 23. Схема бестрансформаторного источника питания на основе импульсного преобразователя напряжения.

Сетевое напряжение, выпрямленное диодным мостом VD1 — VD4 (рис. 23), заряжает конденсаторы С1 и С2. Время заряда конденсатора С2 определяется постоянной цепи R1, С2. В первый момент после включения устройства тиристор VS1 закрыт, но при некотором напряжении на конденсаторе С2 он откроется и подключит к этому конденсатору цепь L1, СЗ.

При этом от конденсатора С2 будет заряжаться конденсатор СЗ большой емкости. Напряжение на конденсаторе С2 будет уменьшаться, а на СЗ — увеличиваться.

Ток через дроссель L1, равный нулю в первый момент после открывания тиристора, постепенно увеличивается до тех пор, пока напряжения на конденсаторах С2 и СЗ не уравняются. Как только это произойдет, тиристор VS1 закроется, но энергия, запасенная в дросселе L1, будет некоторое время поддерживать ток заряда конденсатора СЗ через открывшийся диод VD5. Далее диод VD5 закрывается, и начинается относительно медленный разряд конденсатора СЗ через нагрузку. Стабилитрон VD6 ограничивает напряжение на нагрузке.

Как только закрывается тиристор VS1 напряжение на конденсаторе С2 снова начинает увеличиваться. В некоторый момент тиристор снова открывается, и начинается новый цикл работы устройства. Частота открывания тиристора в несколько раз превышает частоту пульсации напряжения на конденсаторе С1 и зависит от номиналов элементов цепи R1, С2 и параметров тиристора VS1.

Конденсаторы С1 и С2 — типа МБМ на напряжение не ниже 250 В. Дроссель L1 имеет индуктивность 1...2 мГн и сопротивление не более 0,5 Ом. Он намотан на цилиндрическом каркасе диаметром 7 мм.

Ширина обмотки 10 мм, она состоит из пяти слоев провода ПЭВ-2 0,25 мм, намотанного плотно, виток к витку. В отверстие каркаса вставлен подстроечный сердечник СС2,8х12 из феррита М200НН-3. Индуктивность дросселя можно менять в широких пределах, а иногда и исключить его совсем.

Схемы устройств для преобразования энергии

Схемы устройств для преобразования энергии показаны на рис. 24 и 25. Они представляют собой понижающие преобразователи энергии с питанием от выпрямителей с гасящим конденсатором. Напряжение на выходе устройств стабилизировано.

Рис. 24. Схема понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

Рис. 25. Вариант схемы понижающего преобразователя напряжения с сетевым бестрансформаторным питанием.

В качестве динисторов VD4 можно использовать отечественные низковольтные аналоги — КН102А, Б. Как и предыдущее устройство (рис. 23), источники питания (рис. 24 и 25) имеют гальваническую связь с питающей сетью.

Преобразователь напряжения с импульсным накоплением энергии

В преобразователе напряжения С. Ф. Сиколенко с «импульсным накоплением энергии» (рис. 26) ключи К1 и К2 выполнены на транзисторах КТ630, система управления (СУ) — на микросхеме серии К564.

Рис. 26. Схема преобразователя напряжения с импульсным накоплением.

Накопительный конденсатор С1 — 47 мкФ. В качестве источника питания используется батарея напряжением 9 В. Выходное напряжение на сопротивлении нагрузки 1 кОм достигает 50 В. КПД составляет 80% и возрастает до 95% при использовании в качестве ключевых элементов К1 и К2 КМОП-структур типа RFLIN20L.

Импульсно-резонансный преобразователь

Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.

Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.

Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.

LM2596 понижает входное (до 40 В) напряжение - выходное регулируется, ток 3 А. Идеален для светодиодов в машине. Очень дешёвые модули - около 40 рублей в Китае.

Компания Texas Instruments выпускает качественные, надежные, доступные и дешёвые, удобные в применении DC-DC контроллеры LM2596. Китайские заводы выпускают на её основе сверхдешёвые импульсные понижающие (stepdown) конвертеры: цена модуля на LM2596 примерно 35 рублей (вместе с доставкой). Я советую купить сразу партию в 10 штук - для них всегда найдётся применение, при этом цена опустится до 32 рублей, и меньше 30 рублей при заказе 50 штук. Подробнее о расчёте обвязки микросхемы, регулировке тока и напряжения, его применении и о некоторых минусах конвертера.

Типичный метод использования - стабилизированный источник напряжения. На основе этого стабилизатора легко сделать импульсный блок питания, я применяю её как простой и надёжный лабораторный блок питания, выдерживающий короткое замыкание. Они привлекательны постоянством качества (похоже, все они делаются на одном заводе - да и сложно сделать ошибки в пяти деталях), и полным соответствием даташиту и заявленным характеристикам.

Другая область применения - импульсный стабилизатор тока для питания мощных светодиодов . Модуль на этой микросхеме позволит вам подключить автомобильную светодиодную матрицу на 10 Ватт, дополнительно обеспечив защиту от КЗ.

Крайне рекомендую купить их десяток штук - обязательно пригодятся. Они по–своему уникальны - входное напряжение вплоть до 40 вольт, и требуется лишь 5 внешних компонентов. Это удобно - можно поднять напряжение на шине электропитания умного дома до 36 вольт, уменьшив сечение кабелей. В точках потребления ставим такой модуль и настраиваем его на нужные 12, 9, 5 вольт или сколько понадобится.

Рассмотрим их подробнее.

Характеристики микросхемы:

  • Входное напряжение - от 2.4 до 40 вольт (до 60 вольт в версии HV)
  • Выходное напряжение - фиксированное либо регулируемое (от 1.2 до 37 вольт)
  • Выходной ток - до 3 ампер (при хорошем охлаждении - до 4.5А)
  • Частота преобразования - 150кГц
  • Корпус - TO220-5 (монтаж в отверстия) либо D2PAK-5 (поверхностный монтаж)
  • КПД - 70-75% на низких напряжениях, до 95% на высоких
  1. Источник стабилизированного напряжения
  2. Схема преобразователя
  3. Даташит
  4. USB-зарядник на основе LM2596
  5. Стабилизатор тока
  6. Применение в самодельных устройствах
  7. Регулировка выходного тока и напряжения
  8. Улучшенные аналоги LM2596

История - линейные стабилизаторы

Для начала, объясню чем плохи стандартные линейные преобразователи напряжения вроде LM78XX (например 7805) или LM317. Вот его упрощённая схема.

Главный элемент такого преобразователя - мощный биполярный транзистор, включенный в своём «исконном» значении - как управляемый резистор. Этот транзистор входит в состав пары Дарлингтона (для увеличения коэффициента передачи по току и снижения мощности, необходимой на работу схемы). Базовый ток задаётся операционным усилителем, который усиливает разность между выходным напряжением и заданным с помощью ИОН (источник опорного напряжения), т.е. он включен по классической схеме усилителя ошибки.

Таким образом, преобразователь просто включает резистор последовательно с нагрузкой, и управляет его сопротивлением чтобы на нагрузке гасилось, к примеру, ровно 5 вольт. Нетрудно посчитать что при понижении напряжения с 12 вольт до 5 (очень частый случай применения микросхемы 7805) входные 12 вольт распределяются между стабилизатором и нагрузкой в отношении «7 вольт на стабилизаторе + 5 вольт на нагрузке». На токе в полампера на нагрузке выделяется 2.5 ватта, а на 7805 - целых 3.5 ватта.

Получается что «лишние» 7 вольт просто гасятся на стабилизаторе, превращаясь в тепло. Во-первых, из-за этого возникают проблемы с охлаждением, а во-вторых на это уходит много энергии из источника питания. При питании от розетки это не очень страшно (хотя всё равно наносится вред экологии), а при батарейном или аккумуляторном питании об этом нельзя не помнить.

Другая проблема - таким методом вообще невозможно сделать повышающий преобразователь. Часто такая потребность возникает, и попытки решить этот вопрос двадцать-тридцать лет назад поражают - насколько сложен был синтез и расчёт таких схем. Одна из простейших схем такого рода - двухтактный преобразователь 5В->15В.

Нужно признать, что он обеспечивает гальваническую развязку, однако он неэффективно использует трансформатор - каждый момент времени задействована лишь половина первичной обмотки.

Забудем это как страшный сон и перейдём к современной схемотехнике.

Источник напряжения

Схема

Микросхема удобна в применении в качестве step–down конвертера: мощный биполярный ключ находится внутри, осталось добавить остальные компоненты регулятора - быстрый диод, индуктивность и выходной конденсатор, также возможно поставить входной конденсатор - всего 5 деталей.

В версии LM2596ADJ также потребуется схема задания выходного напряжения, это два резистора или один переменный резистор.

Схема понижающего преобразователя напряжения на основе LM2596:

Вся схема вместе:

Здесь можно скачать даташит/datasheet на LM2596 .

Принцип работы: управляемый ШИМ–сигналом мощный ключ внутри устройства посылает импульсы напряжения на индуктивность. В точке А x% времени присутствует полное напряжение, и (1–x)% времени напряжение равно нулю. LC–фильтр сглаживает эти колебания, выделяя постоянную составляющую, равную x * напряжение питания. Диод замыкает цепь, когда транзистор выключен.

Подробное описание работы

Индуктивность противится изменению тока через неё. При появлении напряжения в точке А дроссель создаёт большое отрицательное напряжение самоиндукции, и напряжение на нагрузке становится равно разности напряжения питания и напряжения самоиндукции. Ток индуктивности и напряжение на нагрузке постепенно растут.

После пропадания напряжения в точке А дроссель стремится сохранить прежний ток, текущий из нагрузки и конденсатора, и замыкает его через диод на землю - он постепенно падает. Таким образом, напряжение на нагрузке всегда меньше входного напряжения и зависит от скважности импульсов.

Выходное напряжение

Модуль выпускается в четырёх версиях: с напряжением 3.3В (индекс –3.3), 5В (индекс –5.0), 12В (индекс –12) и регулируемая версия LM2596ADJ. Имеет смысл везде применять именно настраиваемую версию, поскольку она в большом количестве есть на складах электронных компаний и вы вряд ли столкнётесь с её дефицитом - а она требует дополнительно лишь два копеечных резистора. Ну и конечно, версия на 5 вольт тоже пользуется популярностью.

Количество на складе - в последнем столбце.

Можно сделать задание выходного напряжения в виде DIP-переключателя, хороший пример этого приведён здесь, либо в виде поворотного переключателя. В обоих случаях потребуется батарея точных резисторов - зато можно настраивать напряжение без вольтметра.

Корпус

Существует два варианта корпусов: корпус для планарного монтажа TO–263 (модель LM2596S) и корпус для монтажа в отверстия TO–220 (модель LM2596T). Я предпочитаю применять планарную версию LM2596S, поскольку в этом случае радиатором является сама плата, и отпадает необходимость покупать дополнительный внешний радиатор. К тому же её механическая стойкость гораздо выше, в отличие от TO-220, которую обязательно надо к чему–то привинчивать, хотя бы даже к плате - но тогда проще установить планарную версию. Микросхему LM2596T-ADJ я рекомендую использовать в блоках питания, потому что с её корпуса легче отвести большое количество тепла.

Сглаживание пульсаций входного напряжения

Можно использовать как эффективный «интеллектуальный» стабилизатор после выпрямления тока. Поскольку микросхема следит непосредственно за величиной выходного напряжения, колебания входного напряжения вызовут обратно пропорциональное изменение коэффициента преобразования микросхемы, и выходное напряжение останется в норме.

Из этого следует, что при использовании LM2596 в качестве понижающего преобразователя после трансформатора и выпрямителя, входной конденсатор (т.е. тот который стоит сразу после диодного моста) может иметь небольшую ёмкость (порядка 50-100мкФ).

Выходной конденсатор

Благодаря высокой частоте преобразования выходной конденсатор тоже не обязан иметь большую ёмкость. Даже мощный потребитель не успеет значительно посадить этот конденсатор за один цикл. Проведём расчёт: возьмём конденсатор в 100мкФ, 5В выходного напряжения и нагрузку, потребляющую 3 ампера. Полный заряд конденсатора q = C*U = 100e-6 мкФ * 5 В = 500e-6 мкКл.

За один цикл преобразования нагрузка заберёт из конденсатора dq = I*t = 3 А * 6.7 мкс = 20 мкКл (это всего 4% от полного заряда конденсатора), и тут же начнётся новый цикл, и преобразователь засунет в конденсатор новую порцию энергии.

Самое главное - не используйте в качестве входного и выходного конденсатора танталовые конденсаторы. У них прямо в даташитах пишут - «не использовать в цепях питания», потому что они очень плохо переносят даже кратковременные превышения напряжения, и не любят высокие импульсные токи. Используйте обычные алюминиевые электролитические конденсаторы.

Эффективность, КПД и тепловые потери

КПД не так высок, поскольку в качестве мощного ключа используется биполярный транзистор - а он имеет ненулевое падение напряжения, порядка 1.2В. Отсюда и падение эффективности при маленьких напряжениях.

Как видим, максимальная эффективность достигается при разности входного и выходного напряжений порядка 12 вольт. То есть, если нужно уменьшить напряжение на 12 вольт - в тепло уйдёт минимальное количество энергии.

Что такое эффективность преобразователя? Это величина, характеризующая токовые потери - на выделение тепла на полностью открытом мощном ключе по закону Джоуля-Ленца и на аналогичные потери при переходных процессах - когда ключ открыт, допустим, лишь наполовину. Эффекты от обоих механизмов могут быть сравнимы по величине, поэтому не нужно забывать про оба пути потерь. Небольшая мощность идёт также на питание самих «мозгов» преобразователя.

В идеальном случае, при преобразовании напряжения с U1 до U2 и выходном токе I2 выходная мощность равна P2 = U2*I2, входная мощность равна ей (идельный случай). Значит, входной ток составит I1 = U2/U1*I2.

В нашем же случае преобразование имеет эффективность ниже единицы, поэтому часть энергии останется внутри прибора. Например, при эффективности η выходная мощность составит P_out = η*P_in, а потери P_loss = P_in-P_out = P_in*(1-η) = P_out*(1-η)/η. Конечно, преобразователь вынужден будет увеличить входной ток, чтобы поддерживать заданные выходные ток и напряжение.

Можно считать, что при преобразовании 12В -> 5В и выходном токе 1А потери в микросхеме составят 1.3 ватта, а входной ток будет равен 0.52А. В любом случае это лучше любого линейного преобразователя, который даст минимум 7 ватт потерь, и потребит из входной сети (в том числе на это бесполезное дело) 1 ампер - в два раза больше.

Кстати, микросхема LM2577 имеет в три раза меньшую частоту работы, и её эффективность несколько выше, поскольку меньше потерь в переходных процессах. Однако, ей нужны в три раза более высокие номиналы дросселя и выходного конденсатора, а это лишние деньги и размер платы.

Увеличение выходного тока

Несмотря на и так довольно большой выходной ток микросхемы, иногда требуется ещё бОльший ток. Как выйти из этой ситуации?

  1. Можно запараллелить несколько преобразователей. Конечно, они должны быть настроены точно на одно и то же выходное напряжение. В таком случае нельзя обойтись простыми SMD-резисторами в цепи задания напряжения Feedback, нужно использовать либо резисторы с точностью 1%, либо вручную задавать напряжение переменным резистором.
Если нет уверенности в маленьком разбросе напряжений — лучше параллелить преобразователи через небольшой шунт, порядка нескольких десятков миллиом. Иначе вся нагрузка ляжет на плечи преобразователя с самым высоким напряжением и он может не справиться. 2. Можно использовать хорошее охлаждение — большой радиатор, многослойная печатная плата большой площади. Это даст возможность [поднять ток](/lm2596-tips-and-tricks/ "Применение LM2596 в устройствах и разводка платы") до 4.5А. 3. Наконец, можно [вынести мощный ключ](#a7) за пределы корпуса микросхемы. Это даст возможность применить полевой транзистор с очень маленьким падением напряжения, и здорово увеличит как выходной ток, так и КПД.

USB-зарядник на LM2596

Можно сделать очень удобный походный USB-зарядник. Для этого необходимо настроить регулятор на напряжение 5В, снабдить его USB-портом и обеспечить питание зарядника. Я использую купленный в Китае радиомодельный литий-полимерный аккумулятор, обеспечивающий 5 ампер-часов при напряжении 11.1 вольта. Это очень много - достаточно для того чтобы 8 раз зарядить обычный смартфон (не учитывая КПД). С учётом КПД получится не меньше 6 раз.

Не забудьте замкнуть контакты D+ и D- гнезда USB, чтобы сообщить телефону что он подключен к заряднику, и передаваемый ток неограничен. Без этого мероприятия телефон будет думать, что он подключен к компьютеру, и будет заряжаться током в 500мА - очень долго. Более того, такой ток может даже не скомпенсировать ток потребления телефона, и аккумулятор вовсе не будет заряжаться.

Также можно предусмотреть отдельный вход 12В от автомобильного аккумулятора с разъёмом прикуривателя - и переключать источники каким-либо переключателем. Советую установить светодиод, который будет сигнализировать что устройство включено, чтобы не забыть выключить батарею после полной зарядки - иначе потери в преобразователе полностью посадят резервную батарею за несколько дней.

Такой аккумулятор не слишком подходит, потому что он рассчитан на высокие токи - можно попробовать найти менее сильноточную батарею, и она будет иметь меньшие размеры и вес.

Стабилизатор тока

Регулировка выходного тока

Возможна только в версии с настраиваемым выходным напряжением (LM2596ADJ). Кстати, китайцы делают и такую версию платы, с регулировкой напряжения, тока и всевозможной индикацией - готовый модуль стабилизатора тока на LM2596 с защитой от КЗ, можно купить под названием xw026fr4.

Если вы не хотите применять готовый модуль, и желаете сделать эту схему самостоятельно - ничего сложного, за одним исключением: у микросхемы нет возможности управления током, однако её можно добавить. Я объясню, как это сделать, и попутно разъясню сложные моменты.

Применение

Стабилизатор тока - штука, нужная для питания мощных светодиодов (кстати - мой проект микроконтроллерного драйвера мощного светодиода ), лазерных диодов, гальваники, заряда аккумуляторов. Как и в случае со стабилизаторами напряжения, есть два типа таких устройств - линейный и импульсный.

Классический линейный стабилизатор тока - это LM317, и он вполне хорош в своём классе - но его предельный ток 1.5А, для многих мощных светодиодов этого недостаточно. Даже если умощнить этот стабилизатор внешним транзистором - потери на нём просто неприемлемы. Весь мир катит бочку на энергопотребление лампочек дежурного питания, а тут LM317 работает с КПД 30% Это не наш метод.

А вот наша микросхема - удобный драйвер импульсного преобразователя напряжения, имеющий много режимов работы. Потери минимальны, поскольку не применяется никаких линейных режимов работы транзисторов, только ключевые.

Изначально она предназначалась для схем стабилизации напряжения, однако несколько элементов превращают её в стабилизатор тока. Дело в том, что микросхема всецело полагается на сигнал «Feedback» в качестве обратной связи, а вот что на него подавать - это уже наше дело.

В стандартной схеме включения на эту ногу подаётся напряжение с резистивного делителя выходного напряжения. 1.2В - это равновесие, если Feedback меньше - драйвер увеличивает скважность импульсов, если больше - уменьшает. Но ведь можно на этот вход подать напряжение с токового шунта!

Шунт

Например, на токе 3А нужно взять шунт номиналом не более 0.1Ом. На таком сопротивлении этот ток выделит около 1Вт, так что и это много. Лучше запараллелить три таких шунта, получив сопротивление 0.033Ом, падение напряжения 0.1В и выделение тепла 0.3Вт.

Однако, вход Feedback требует напряжение 1.2В - а мы имеем лишь 0.1В. Ставить бОльшее сопротивление нерационально (тепла будет выделяться в 150 раз больше), поэтому остаётся как-то увеличить это напряжение. Делается это с помощью операционного усилителя.

Неинвертирующий усилитель на ОУ

Классическая схема, что может быть проще?

Объединяем

Теперь объединяем обычную схему преобразователя напряжения и усилитель на ОУ LM358, к входу которого подключаем токовый шунт.

Мощный резистор 0.033 Ом - это и есть шунт. Его можно сделать из трёх резисторов 0.1 Ом, соединённых параллельно, а для увеличения допустимой рассеиваемой мощности - используйте SMD-резисторы в корпусе 1206, поставьте их с небольшим промежутком (не вплотную) и постарайтесь максимально оставить слой меди вокруг резисторов и под ними. На выход Feedback подключен небольшой конденсатор, чтобы устранить возможный переход в режим генератора.

Регулируем и ток и напряжение

Давайте заведём на вход Feedback оба сигнала - и ток, и напряжение. Для объединения этих сигналов воспользуемся обычной схемой монтажного «И» на диодах. Если сигнал тока выше сигнала напряжения - он будет доминировать и наоборот.

Пару слов о применимости схемы

Вы не можете регулировать выходное напряжение. Хотя невозможно регулировать одновременно и выходной ток, и напряжение - они пропорциональны друг другу, с коэффициентом «сопротивление нагрузки». А если блок питания реализует сценарий вроде «постоянное выходное напряжение, но при превышении тока начинаем уменьшать напряжение», т.е. CC/CV - то это уже зарядное устройство.

Максимальное напряжение питания схемы - 30В, поскольку это предел для LM358. Можно расширить этот предел до 40В (или 60В с версией LM2596-HV), если питать ОУ от стабилитрона.

В последнем варианте в качестве суммирующих диодов необходимо использовать диодную сборку, поскольку в ней оба диода сделаны в рамках одного технологического процесса и на одной пластине кремния. Разброс их параметров будет гораздо меньше разброса параметров отдельных дискретных диодов - благодаря этому мы получим высокую точность отслеживания значений.

Также нужно внимательно следить за тем, чтобы схема на ОУ не возбудилась и не перешла в режим генерации. Для этого старайтесь уменьшить длину всех проводников, а особенно дорожки, подключенной к 2 выводу LM2596. Не располагайте ОУ вблизи этой дорожки, а диод SS36 и конденсатор фильтра расположите ближе к корпусу LM2596, и обеспечьте минимальную площадь петли земли, подключенной к этим элементам - необходимо обеспечить минимальную длину пути возвратного тока «LM2596 -> VD/C -> LM2596″.

Применение LM2596 в устройствах и самостоятельная разводка платы

О применении микросхемы в своих устройствах не в виде готового модуля я подробно рассказал в другой статье , в которой рассмотрены: выбор диода, конденсаторов, параметров дросселя, а также рассказал про правильную разводку и несколько дополнительных хитростей.

Возможности дальнейшего развития

Улучшенные аналоги LM2596

Проще всего после этой микросхемы перейти на LM2678 . По сути - это тот же самый stepdown преобразователь, только с полевым транзистором, благодаря которому КПД поднимается до 92%. Правда, у него 7 ног вместо 5, и он не pin-to-pin совместимый. Тем не менее эта микросхема очень похожа, и будет простым и удобным вариантом с улучшенной эффективностью.

L5973D – довольно старая микросхема, обеспечивающая до 2.5А, и немного более высокий КПД. Также у неё почти в два раза выше частота преобразования (250 кГц) - следовательно, требуются меньшие номиналы индуктивности и конденсатора. Однако, я видел что с ней происходит, если поставить её напрямую в автомобильную сеть - довольно часто выбивает помехами.

ST1S10 - высокоэффективный (КПД 90%) DC–DC stepdown преобразователь.

  • Требует 5–6 внешних компонентов;

ST1S14 - высоковольтный (до 48 вольт) контроллер. Большая частота работы (850 кГц), выходной ток до 4А, выход Power Good, высокий КПД (не хуже 85%) и схема защиты от превышения тока нагрузки делают его, наверное, лучшим преобразователем для питания сервера от 36–вольтового источника.

Если требуется максимальный КПД - придётся обращаться к неинтегрированным stepdown DC–DC контроллерам. Проблема интегрированных контроллеров в том, что в них никогда не бывает классных силовых транзисторов - типичное сопротивление канала не выше 200мОм. Однако если взять контроллер без встроенного транзистора - можно выбрать любой транзистор, хоть AUIRFS8409–7P с сопротивлением канала в пол–миллиома

DC-DC преобразователи с внешним транзистором

Следующая часть

Поделиться