Особенности монтажа полупроводниковых приборов и микросхем. Эксплуатация полупроводниковых приборов и микросхем

Министерство Науки и Образования

Реферат на тему:

Применение полупроводниковых приборов

Выполнил:

ученик 10-В класса

Средней Общеобразовательной

Школы №94

Гладков Евгений

Проверила:

Ольга Петровна

г. Харьков, 2004.


Полупроводниковые приборы – различные по конструкции, технологии изготовления и функциональному назначению электронные приборы, основанные на использовании свойств полупроводников. К полупроводниковым приборам относят также полупроводниковые микросхемы, которые представляют собой монолитные законченные функциональные узлы (усилитель, триггер, набор элементов), все компоненты которых изготавливаются в едином технологическом процессе.

Полупроводники – вещества, электронная проводимость которых имеет промежуточное значение между проводимостью проводников и диэлектриков. К полупроводникам относится обширная группа естественных и синтетических веществ различной химической природы, твердых и жидких, с разными механизмами проводимости. Наиболее перспективными полупроводниками в современной технике являются так называемые электронные полупроводники, проводимость которых обусловлена движением электронов. Однако в отличие от металлических проводников концентрация свободных электронов в полупроводниках очень мала и возрастает с повышением температуры, чем объясняется их пониженная проводимость и специфическая зависимость от удельного сопротивления и температуры: если у металлических проводников при нагревании электрическое сопротивление повышается, то у полупроводников оно понижается. Увеличение концентрации свободных электронов с повышением температуры объясняется тем, что с увеличением интенсивности тепловых колебаний атомов полупроводников все большее количество электронов срывается с внешних оболочек этих атомов и получает возможность перемещаться по объему полупроводника. В переносе электричества через полупроводники, помимо свободных электронов могут принимать участие места, освободившиеся от перешедших в свободное состояние электронов – так называемые дырки.

Поэтому и свободные электроны и дырки называют носителями электрического заряда, причём дырке приписывают положительный заряд, равный заряду электрона. В идеальном полупроводнике образование свободных электронов и дырок происходит одновременно, парами, а потому концентрации электронов и дырок одинаковы. Введение же в полупроводник определенных примесей способно привести к увеличению концентрации носителей одного знака и сильно повысить проводимость. Это происходит при условии, что на внешней оболочке атомов примеси находится на один электрон больше (донорные примеси) или на один электрон меньше (акцепторные примеси), чем у атомов исходного полупроводника. В первом случае примесные атомы (доноры) легко отдают лишний электрон, а во втором (акцепторы)– забирают недостающий электрон от атомов полупроводника, создавая дырку. Для наиболее распространённых полупроводников (кремния и германия), являющихся четырёхвалентными химическими элементами, донорами служат пятивалентные вещества (фосфор, мышьяк, сурьма), а акцепторами – трехвалентные (бор, алюминий, индий). В зависимости от преобладающего типа носителей примесные полупроводники делят на полупроводники электронного (п-типа) и дырочного (р-типа).

Зависимость электропроводимости полупроводника от различных внешних воздействий служит основой разнообразных технических приборов. Так, уменьшение сопротивления используется в термисторах, уменьшение сопротивления при освещении– в фоторезисторах. Появление ЭДС при прохождении тока через полупроводник, помещённый в магнитное поле (эффект Холла) применяется для измерения магнитных полей, мощности и т.д. Особенно ценными свойствами обладают неоднородные полупроводники (с изменяющейся от одной части объёма к другой проводимостью), а также контакты разных полупроводников между собой и полупроводников с металлами. Возникающие в таких системах эффекты наиболее ярко проявляются у электронно-дырочных переходов (р-п-переходом). Использование р-п-переходов лежит в основе действия многих полупроводниковых приборов: транзистора, полупроводникового диода, полупроводникового фотоэлемента, термоэлектрического генератора, солнечной батареи.

60-е – 70-е годы составляют эпоху полупроводниковой техники и собственно электроники. Электроника внедряется во все отрасли науки, техники и народного хозяйства. Являясь комплексом наук, электроника тесно связана с радиофизикой, радиолокацией, радионавигацией, радиоастрономией, радиометеорологией, радиоспектроскопией, электронной вычислительной и управляющей техникой, радиоуправлением на расстоянии, телеизмерениями, квантовой радиоэлектроникой.

В этот период продолжалось дальнейшее усовершенствование электровакуумных приборов. Большое внимание уделяется повышению их прочности, надёжности, долговечности. Разрабатывались пальчиковые и сверхминиатюрные лампы, что давало возможность снизить габариты установок, насчитывающих большое количество радиоламп.

Продолжались интенсивные работы в области физики твёрдого тела и теории полупроводников, разрабатывались способы получения монокристаллов полупроводников, методы их очистки и введения примесей. Большой вклад в развитие физики полупроводников внесла советская школа академика А.Ф.Иоффе.

Полупроводниковые приборы быстро и широко распространились за 50-е-70-е годы во все области народного хозяйства. В 1926 г. был предложен полупроводниковый выпрямитель переменного тока из закиси меди. Позднее появились выпрямители из селена и сернистой меди. Бурное развитие радиотехники (особенно радиолокации) в период второй мировой войны дало новый толчок к исследованиям в области полупроводников. Были разработаны точечные выпрямители переменных токов СВЧ на основе кремния и германия, а позднее появились плоскостные германиевые диоды. В 1948 г. американские учёные Бардин и Браттейн создали германиевый точечный триод (транзистор), пригодный для усиления и генерирования электрических колебаний. Позднее был разработан кремниевый точечный триод. В начале 70-х годов точечные транзисторы практически не применялись, а основным типом транзистора являлся плоскостной, впервые изготовленный в 1951 г. К концу 1952 г. были предложены плоскостной высокочастотный тетрод, полевой транзистор и другие типы полупроводниковых приборов. В 1953 г. был разработан дрейфовый транзистор. В эти годы широко разрабатывались и исследовались новые технологические процессы обработки полупроводниковых материалов, способы изготовления p-n- переходов и самих полупроводниковых приборов. В начале 70-х годов, кроме плоскостных и дрейфовых германиевых и кремниевых транзисторов, находили широкое распространение и другие приборы, использующие свойства полупроводниковых материалов: туннельные диоды, управляемые и неуправляемые четырёхслойные переключающие приборы, фотодиоды и фототранзисторы, варикапы, терморезисторы и т.д.

Развитие и совершенствование полупроводниковых приборов характеризуется повышением рабочих частот и увеличением допустимой мощности. Первые транзисторы обладали ограниченными возможностями (предельные рабочие частоты порядка сотни килогерц и мощности рассеяния порядка 100 - 200 МВт) и могли выполнять лишь некоторые функции электронных ламп. Для того же диапазона частот были созданы транзисторы с мощностью в десятки ватт. Позднее были созданы транзисторы, способные работать на частотах до 5 МГц и рассеивать мощность порядка 5 Вт, а уже в 1972 г. были созданы образцы транзисторов на рабочие частоты 20 - 70 МГц с мощностями рассеивания, достигающими 100 Вт и более. Маломощные же транзисторы (до 0,5 - 0,7 Вт) могут работать на частотах свыше 500 МГц. Позже появились транзисторы, работающие на частотах порядка 1000 МГц. Одновременно велись работы по расширению диапазона рабочих температур. Транзисторы, изготовленные на основе германия, имели первоначально рабочие температуры не выше +55 ¸ 70 °С, а на основе кремния - не выше +100 ¸ 120 °С. Созданные позже образцы транзисторов на арсениде галлия оказались работоспособными при температурах до +250 °С, и их рабочие частоты в итоге увеличились до 1000 МГц. Есть транзисторы на карбиде, работающие при температурах до 350 °С. Транзисторы и полупроводниковые диоды по многим показателям в 70-е годы превосходили электронные лампы и в итоге полностью вытеснили их из областей электроники. В интегральной электронике МДП-структуры широко используются для создания транзисторов и на их основе различных интегральных микросхем.

Перед проектировщиками сложных электронных систем, насчитывающих десятки тысяч активных и пассивных компонентов, стоят задачи уменьшения габаритов, веса, потребляемой мощности и стоимости электронных устройств, улучшения их рабочих характеристик и, что самое главное, достижения высокой надёжности работы. Эти задачи успешно решает микроэлектроника - направление электроники, охватывающее широкий комплекс проблем и методов, связанных с проектированием и изготовлением электронной аппаратуры в микроминиатюрном исполнении за счёт полного или частичного исключения дискретных компонентов.

Основной тенденцией микроминиатюризации является "интеграция" электронных схем, т.е. стремление к одновременному изготовлению большого количества элементов и узлов электронных схем, неразрывно связанных между собой. Поэтому из различных областей микроэлектроники наиболее эффективной оказалась интегральная микроэлектроника, которая является одним из главных направлений современной электронной техники. Сейчас широко используются сверхбольшие интегральные схемы, на них построено всё современное электронное оборудование, в частности ЭВМ и т.д.

Срок службы полупроводниковых триодов и их экономичность во много раз больше, чем у электронных ламп. За счёт чего транзисторы нашли широкое применение в микроэлектронике - теле-, видео-, аудио-, радиоаппаратуре и, конечно же, в компьютерах. Они заменяют электронные лампы во многих электрических цепях научной, промышленной и бытовой аппаратуры.

Биполярный транзистор – универсальный полупроводниковый усилительный прибор, выполняющий те же функции, что и электронная лампа с управляющей сеткой. По аналогии с лампой, биполярный транзистор называют полупроводниковым триодом. Его действие основано на использовании особых свойств неоднородных полупроводников. Особенность транзистора состоит в том, что между электронно-дырочными переходами существует взаимодействие – ток одного из переходов может управлять током другого.

Помимо усиления электрических колебаний, биполярные транзисторы широко используются как бесконтактные коммутационные устройства, в разнообразных генераторных схемах, для преобразования и детектирования колебаний, причём от соответствующих ламповых устройств схемы с биполярными транзисторами отличаются миниатюрностью, высокой экономичностью питания, большой механической прочностью, мгновенной скоростью к действию, большой долговечностью. Максимальные рабочие частоты самых высокочастотных биполярных транзисторов превышают 10000 МГц, наибольшие мощности – примерно 200-250 Вт. К недостаткам биполярных транзисторов относится существенная температурная зависимость их характеристик.

Основные материалы, из которых изготовляют транзисторы - кремний и германий, перспективные – арсенид галлия, сульфид цинка и широкозонные проводники.

Полевой транзистор – полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого сигналом. Полевой транзистор отличается от биполярного тем, что используемый в нём механизм усиления обусловлен носителями заряда только одного знака (электронами или дырками). Полевой транзистор называют также канальным и униполярным транзистором.

Полевые транзисторы имеют ВАХ (вольт-амперные характеристики), подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов. Это позволяет применять их в схемах, в большинстве случаев использовались электронные лампы, например, в усилителях постоянного тока с высокоомным входом, в истоковых повторителях с особо высокоомным входом, в электрометрических усилителях, различных реле времени, RS - генераторах синусоидальных колебаний низких и инфранизких частот, в генераторах пилообразных колебаний, усилителях низкой частоты, работающих от источников с большим внутренним сопротивлением, в активных RC - фильтрах низких частот. Полевые транзисторы с изолированным затвором используют в высокочастотных усилителях, смесителях, ключевых устройствах.

Полевые транзисторы имеют вольт-амперные характеристики, подобные ламповым, и обладают всеми принципиальными преимуществами транзисторов.

Полупроводниковый диод – двухэлектродный полупроводниковый прибор, действие которого основано на использовании свойств электронно-дырочного перехода. Основное свойство полупроводникового диода – односторонняя проводимость, позволяющая применять полупроводниковые диоды в качестве выпрямителей переменного тока. Прообразом современных полупроводниковых диодов был кристаллический детектор, состоящий из кристалла (карборунда, цинкита) и металлической пружинки, острие которой прижималось к поверхности кристалла. Эффект выпрямления у таких детекторов зависел от выбранной точки соприкосновения пружинки с кристаллом и отличался большой неустойчивостью, что требовало периодических поисков "чувствительной" точки. В современных точечных полупроводниковых диодах используются пластинки из кристаллов кремния или германия, а контакт металлической иглы с полупроводником подвергается особой электрической формовке. Эти меры наряду с применением герметической оболочки обеспечивают большую стабильность и долговечность точечных полупроводниковых диодов. Помимо детектирования радиосигналов всех частот вплоть до сотен тысяч МГц, точечные полупроводниковые диоды применяются для преобразования частоты, в измерительной радиоаппаратуре и т.д. и т.п. Наиболее обширную группу полупроводниковых диодов образуют плоскостные диоды, в которых электронно-дырочный переход создается теми же методами, что и в плоскостных транзисторах: вплавлением примесей, путем диффузии примесных веществ в объем исходной пластинки. Полупроводниковые диоды применяются также для многих других целей, в том числе для селекции импульсов определенной полярности, для стабилизации напряжения, в качестве управляемого конденсатора и др. Особыми разновидностями полупроводникового диода являются переключающие диоды с тремя р-п-переходами, двухбазовый диод (применяют главным образом в импульсных пусковых схемах) и туннельный диод, фотодиод и обращенный диод.

Туннельный диод – двухэлектродный диод полупроводниковый прибор, который применяется для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах. Принцип работы туннельных диодов основан на явлении квантовомеханического туннельного эффекта. Туннельные диоды применяются в широкополосных усилителях, для усиления и генерирования высокочастотных электрических колебаний и в качестве быстродействующего переключателя в импульсных и электронных логических устройствах.

Фотодиод – полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под воздействием энергии светового излучения в области р-п-перехода происходит ионизация атомов основного вещества и смеси, в результате чего генерируются пары носителей заряда – электрон и дырка. Во внешней цепи, присоединенной к р-п-переходу, возникает ток, вызванный движением этих носителей. Промышленность выпускает германиевые и кремниевые фотодиоды. Разновидность фотодиода, используемого для силового преобразования лучистой энергии, – солнечная батарея, которая является важным источником питания в космической технике, но находит применение для питания аппаратуры и в земных условиях.

Полупроводниковый стабилизатор напряжения (стабилитрон) – это кремниевый плоскостной полупроводниковый диод, напряжение на котором сохраняется с определенной точностью при протекании через него тока в заданном диапазоне. Т.е., если стабилитрон рассчитан на прибивное напряжение 4,5в и напряжение до стабилитрона было, предположим, 5в, то после него его значение будет не больше 4,5в. Если напряжение, на которое рассчитан стабилитрон, в несколько раз меньше напряжения на участке до него, то он будет сильно греться, не исключена и его порча (он сгорит). Стабилитроны изготовляются для стабилизации напряжений от 3 до сотен вольт, благодаря чему находят большое применение в радиотехнике для стабилизации напряжения. Во избежание порчи стабилитрона последовательно с ним включается ограничивающий ток резистор.

Варикап – специально сконструированный полупроводниковый диод, применяемый в качестве конденсатора переменной емкости. Значение емкости варикапа определяется емкостью р-п-перехода и изменяется при изменении приложенного к переходу (к диоду) напряжения. С электрической цепи с варикапом, появляются составляющие тока новых частот. Это явление используется в радиотехнике для умножения и деления частоты, для параметрического усиления. Варикап может также использоваться для настройки колебательного контура, для автоматической подстройки частоты и частотной модуляции.

Варистор – полупроводниковый прибор, сопротивление которого изменяется по нелинейному закону при изменении приложенного напряжения. К варисторам относятся большинство полупроводниковых, электронных и ионных приборов. Чаще всего варисторы применяются для защиты элементов электрических схем от перенапряжений и контактов реле от разрушения, а также в стабилизаторах амплитуды в качестве элементов, снижающих нелинейные искажения, в схемах преобразования частоты.

Оптрон – полупроводниковый прибор, содержащий источник и приёмник светового излучения, которые оптически и конструктивно связаны между собой. Элементами оптрона являются источник света и фотоприёмник, но существуют оптроны, состоящие из большого количества электросветовых и фотоэлектрических преобразователей. Оптрон представляет собой сочетание в одном корпусе электросветового преобразователя (лампочки накаливания, светодиода) с фотоэлектрическим (фоторезистором, фотодиодом). Такой оптрон позволяет, например, при полной электрической изоляции двух цепей осуществлять управление током в одной цепи путем изменения тока в другой (дистанционное включение, регулирование громкости, АРУ и т.п.). Наряду с элементарным оптроном создаются сложные конструкции, включающие в себя большое число электросветовых и фотоэлектрических преобразователей. Такие оптроны аналогичны интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов.

Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. Те и другие представляют собой четырёхслойную структуру полупроводника с разного вида проводимостями. Крайние слои являются анодом и катодом, а третий электрод у тринисторов служит управляющим электродом. Поэтому динисторы являются переключающими диодами, а тринисторы – управляемыми. Если такой прибор включить в цепь переменного тока, то он открывается, пропуская ток в нагрузку лишь тогда, когда мгновенное значение напряжения достигает определенного уровня, либо при подаче отпирающего напряжения на специальный управляющий электрод. Маломощные тиристоры находят применение в импульсной технике. Выпускаются мощные тиристоры для применения в устройствах управления электроприводом и в мощных выпрямителях.

Фототиристор отличается от обычного тем, что в его корпусе имеется окно для облучения структуры световым потоком. Поэтому Фототиристор можно отпирать как воздействием светового потока, так и подачей на управляющий электрод электрического импульса управления. Уровень излучения, необходимый для запуска фототиристора, зависит от температуры и анодного напряжения. Для точного запуска фототиристора используют излучения лазеров и светодиодов. Применяются фототиристоры в тех областях, где необходима электрическая изоляция между управляющим сигналом силовой цепью.

Терморезистор – полупроводниковый прибор, электрическое сопротивление которого изменяется при изменении температуры. Основой терморезисторов являются поликристаллические полупроводниковые материалы с электронной проводимостью – окислы так называемых переходных металлов (от титана до цинка), а также сульфиды, карбиды и нитриды некоторых металлов.

Используются терморезисторы в качестве датчиков устройств противопожарной сигнализации, тепловой защиты, для стабилизации токов и температурной компенсации в транзисторной аппаратуре.

Полупроводниковый светодиод – это излучающий полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для непосредственного преобразования электрической энергии в энергию некогерентного светового излучения. Конструкцией светодиода предусмотрена возможность вывода светового излучения из области перехода сквозь прозрачное стекло в корпусе.

Светодиоды используются как световые индикаторы, источники излучения в оптоэлектронных парах, при работе с кино- и фототехникой, в устройствах автоматики, вычислительной и измерительной технике.


Условные обозначения полупроводниковых приборов:


Литература

1). Виноградов Ю.В. "Основы электронной и полупроводниковой техники". Изд. 2-е, доп. М., "Энергия", 1972 г.

2). Журнал "Радио", номер 12, 1978 г.

3). Терещук Р.М. Полупроводниковые приемно-усилительные устройства: Справочник радиолюбителя / 4-е издание, стер. - Киев: Наук. Думка 1989.

4). Бочаров Л.Н. Полевые транзисторы. - М.: Радио и связь, 1984.

5). Полупроводниковые приборы: транзисторы: Справочник / Н.Н.Горюнова. М.; Энергоатомиздат, 1985.

6). Справочник " Полупроводниковые приборы: диоды, тиристоры, оптоэлектронные приборы"; М.: Энергоатомиздат, 1987г.

Электрический монтаж радиокомпонентов должен обеспечивать надежную работу аппаратуры, приборов и систем в условиях механических и климатических воздействий, указанных в ТУ на данный вид РЭА. Поэтому при монтаже полупроводниковых приборов (ПП), интегральных схем (ИС) радиокомпонентов на печатные платы или шасси аппаратуры должны соблюдаться следующие условия:

  • надежный контакт корпуса мощного ПП с теплоотводом (радиатором) или шасси;
  • необходимая конвекция воздуха у радиаторов и элементов, выделяющих большое количество теплоты;
  • удаление полупроводниковых элементов от элементов схемы, выделяющих при работе значительное количество теплоты;
  • защита монтажа, расположенного вблизи съемных элементов, от механических повреждений при эксплуатации;
  • в процессе подготовки и проведения электрического монтажа ПП и ИС механические и климатические воздействия на них не должны превышать значений, указанных в ТУ;
  • при рихтовке, формовке и обрезке выводов ПП и ИС участок вывода около корпуса должен быть закреплен так, чтобы в проводнике не возникали изгибающие или растягивающие усилия. Оснастка и приспособления для формовки выводов должны быть заземлены;
  • расстояние от корпуса ПП или ИС до начала изгиба вывода должно быть не менее 2 мм, а радиус изгиба при диаметре вывода до 0,5 мм - не менее 0,5 мм, при диаметре 0,6- 1 мм - не менее 1 мм, при диаметре свыше 1 мм - не менее 1,5 мм.

В процессе монтажа, транспортировки и хранения ПП и ИС (особенно полупроводниковых приборов СВЧ) необходимо обеспечивать их защиту от воздействия статического электричества. Для этого все монтажное оборудование, инструменты, контрольно-измерительную аппаратуру надежно заземляют. Чтобы снять статическое электричество с тела электромонтажника, пользуются заземляющими браслетами и специальной одеждой.

Для отвода теплоты участок вывода между корпусом ПП (или ИС) и местом пайки зажимают специальным пинцетом (теплоотводом). Если температура припоя не превышает 533 К ± 5 К (270 °С), а время пайки не более 3 с, пайку выводов ПП (или ИС) производят без теплоотвода или применяют групповую пайку (волной припоя, погружением в расплавленный припой или др.).

Очистку печатных плат (или панелей) от остатков флюса после пайки производят растворителями, которые не влияют на маркировку и материал корпусов ПП (или ИС).

При установке ИС с жесткими радиальными выводами в металлизированные отверстия печатной платы выступающая часть выводов над поверхностью платы в местах пайки должна быть 0,5-1,5 мм. Монтаж ИС этим способом производят после подрезки выводов (рис. 55). Для облегчения демонтажа установку ИС на печатные платы рекомендуется производить с зазорами между их корпусами.

Рис. 55. Формовка жестких радиальных выводов ИС:
1 - отформованные выводы, 2 - выводы перед формовкой

Интегральные схемы в корпусах с мягкими планарными выводами устанавливают на контактные площадки платы без монтажных отверстий. В этом случае их расположение на плате определяется формой контактных площадок (рис. 56).

Рис. 56. Монтаж ИС с плоскими (планарными) выводами на печатную плату:
1 - контактная площадка с ключом, 2 - корпус, 3 - плата, 4 - вывод

Примеры формовки ИС с планарными выводами приведены на рис. 57.

Рис. 57. Формовка плоских (планарных) выводов ИС при установке на плату без зазора (я), с зазором (б)

Установка и крепление ПП и И С, а также навесных радиокомпонентов па печатные платы должны обеспечивать доступ к ним и возможность их замены. Для охлаждения ИС их следует располагать на печатных платах с учетом движения воздушного потока вдоль их корпусов.

Для электрического монтажа ПП и малогабаритных радиокомпонентов сначала их устанавливают на монтажную арматуру (лепестки, штыри и т. п.) и механически закрепляют на ней выводы. Для пайки монтажного соединения применяют бескислотный флюс, остатки которого после пайки удаляют.

Радиокомпоненты к монтажной арматуре крепят либо механически на собственных выводах, либо дополнительно хомутом, скобой, держателем, заливкой компаундом, мастикой, клеем и др. При этом радиокомпоненты закрепляют так, чтобы они не смещались при вибрации и ударах (тряске). Рекомендуемые виды крепления радиокомпонентов (сопротивлений, конденсаторов, диодов, транзисторов) показаны на рис. 58.

Рис. 58. Установка радиокомпонентов на монтажную арматуру:
а, б - резисторов (конденсаторов) с плоскими и круглыми выводами, в - конденсатора ЭТО, г - диодов Д219, Д220, д - мощного диода Д202, е - триодов МП-14, МП-16, ж - мощного триода П4; 1 - корпус, 2 - лепесток, 3 - вывод, 4 - радиатор, 5 - провода, 6 - изоляционная трубка

Механическое крепление выводов радиокомпонентов на монтажной арматуре производится загибкой или скруткой их вокруг арматуры с последующим обжатием. При этом излом вывода при обжатии не допускается. При наличии в контактной стойке или лепестке отверстия вывод радиокомпонента перед пайкой механически закрепляют, продевая его через отверстие и огибая на половину или целый оборот вокруг лепестка или стойки с последующим обжатием. Излишек вывода при этом удаляют боковыми кусачками, а место крепления обжимают плоскогубцами.

Как правило, способы установки радиокомпонентов и крепления их выводов оговариваются в сборочном чертеже на изделие.

Для уменьшения расстояния между радиокомпонентом и шасси на их корпуса или выводы надевают изоляционные трубки, диаметр которых равен или несколько меньше диаметра радиокомпонента. В этом случае радиокомпоненты располагают вплотную друг к другу или к шасси. Изоляционные трубки, надеваемые на выводы радиокомпонентов, исключают возможность замыкания с соседними токопроводящими элементами.

Длина монтажных выводов от места пайки до корпуса радиокомпоиента приводится в ТУ и, как правило, оговаривается в чертеже: для дискретных радиокомпонеитов она должна быть не менее 8 мм, а для ПП - не менее 15 мм. Длина вывода от корпуса до изгиба радиокомпонента также оговаривается в чертеже: она должна быть не менее 3 мм. Выводы радиокомпонентов изгибают шаблоном, приспособлением или специальным инструментом. Причем внутренний радиус изгиба должен быть не меньше удвоенного диаметра или толщины вывода. Жесткие выводы радиокомпонентов (сопротивлений ПЭВ и т. п.) при монтаже отгибать не разрешается.

Радиокомпоненты, подбираемые при настройке или регулировке прибора, следует подпаивать без механического закрепления на полную длину своих выводов. После подбора их номиналов и регулировки прибора радиокомпоненты должны быть подпаяны к опорным точкам с механическим закреплением выводов.

Полупроводниковые приборы, сведения о которых приводятся в справочнике, являются приборами общего применения. Они могут работать в разнообразных условиях и режимах, характерных для различных классов радиоэлектронной аппаратуры широкого, промышленного и специального применения.

Общие технические требования к приборам, предназначенным для аппаратуры определенного класса, содержатся в общих технических условиях (ОТУ) на эти приборы. Конкретные нормы на значения электрических параметров и специфические требования к данному типу приборов излагаются в частных технических условиях (ЧТУ) и ГОСТ на приборы.

Высокая надежность радиоэлектронной аппаратуры на полупроводниковых приборах может быть обеспечена лишь при условии учета на стадии ее проектирования, изготовления и эксплуатации следующих особенностей приборов:

  • разброса значений параметров, их зависимости от режима и условий работы;
  • изменения значений параметров в течение времени хранения или работы;
  • необходимости хорошего отвода тепла or корпусов приборов;
  • необходимости обеспечения запасов по электрическим, механическим и другим нагрузкам на приборы в радиоэлектронной аппаратуре;
  • необходимости принятия мер, обеспечивающих отсутствие перегрузок приборов во время монтажа и сборки радиоэлектронной аппаратуры.

Значения параметров приборов одного типа не одинаковы, а лежат в некотором интервале. Этот интервал ограничивается минимальными или максимальными значениями, указанными в справочнике. Некоторые параметры имеют двухстороннее ограничение значений. Приведенные в справочнике вольтамперные характеристики, зависимости параметров от режима и температуры являются усредненными для большою количества экземпляров приборов данного типа. Эти зависимости могут использоваться при выборе типа прибора для данной схемы и ориентировочного ее расчета.

Большинство параметров полупроводниковых приборов значительно изменяется в зависимости от режима работы и температуры. Например, время восстановления обратного сопротивления импульсных диодов зависит от значения прямого тока, напряжения переключения и сопротивления нагрузки; потери преобразования и коэффициент шума СВЧ диодов зависят от уровня подводимой мощности. Значительно изменяется в диапазоне температуры, указанном в технических условиях, обратный ток диода. В справочнике приводятся значения параметров, гарантируемых ТУ для соответствующих оптимальных или предельных режимов использования.

Применение и эксплуатация приборов должны осуществляться в соответствии с требованиями ТУ и стандартами - руководствами по применению. При конструировании радиоэлектронной аппаратуры необходимо стремиться обеспечить ее работоспособность в возможно более широких интервалах изменений важнейших параметров приборов. Разброс параметров приборов и изменение их значений во времени при проектировании аппаратуры учитываются расчетными методами или экспериментально, например методом граничных испытаний.

Время, в течение которого полупроводниковые приборы могут работать в аппаратуре (их срок службы), практически неограниченно Нормативно-техническая документация на поставку приборов (ГОСТ. ТУ), как правило, гарантирует минимальную наработку не менее 15 000 ч. а в облегченных режимах и условиях эксплуатации - до 30 000 ч. Однако теория и эксперименты показывают, что через 50 - 70 тыс. ч работы возрастания интенсивности отказов не наблюдается. Тем не менее за время храпения и работы могут происходить изменения значений параметров приборов. У отдельных экземпляров эти изменения оказываются столь значительными, что происходит отказ аппаратуры. Для контроля уровня надежности изготовляемых приборов используются такие показатели, как гамма-процентный ресурс, гамма-процентная сохраняемость, минимальная наработка (гарантийная наработка), интенсивность отказов при специальных кратковременных испытаниях в форсированном режиме. Нормы на эти показатели устанавливаются в ТУ на приборы.

Для расчета надежности радиоэлектронной аппаратуры следует использовать количественные показатели надежности, устанавливаемые путем проведения специальных испытаний, обработки большого объема статистических данных о различных испытаниях и "эксплуатации приборов в разнообразной аппаратуре.

Экспериментально установлено, что интенсивность (вероятность) отказов приборов растет при увеличении рабочей температуры переходов, напряжения на электродах и тока. В связи с повышением температуры ускоряю(сч практически отказы всех видов: короткие замыкания, обрывы и значительные изменения параметров. Повышение напряжения значительно ускоряет отказы приборов с МДП структурами и с низковольтными переходами. Увеличение тока приводит, главным образом, к ускоренному разрушению контактных соединений и токоведуших дорожек металлизации на кристаллах.

Приближенная зависимость интенсивности отказов от нагрузки имеет вид:

где λ(T п,макс, U макс, I макс) интенсивность отказов при максимальной нагрузке (может быть взята из результатов кратковременных испытаний в форсированном режиме). Значение В приблизительно равно 6000 К.

Для повышения надежности работы приборов в аппаратуре необходимо снижать, главным образом, температуру переходов и кристаллов, а также рабочие напряжения и токи, которые должны быть существенно ниже предельно допустимых. Рекомендуется устанавливать напряжения и токи (мощность) на уровне 0.5-0.7 предельных (максимальных) значений. Эксплуатация полупроводниковых приборов при температуре, напряжении или токе, равных предельному значению, запрещается. Не допускается даже кратковременное (импульсное) превышение предельно допустимою режима при эксплуатации. Поэтому необходимо принимать меры по защите приборов от электрических перегрузок, возникающих при переходных процессах (при включении и выключении аппаратуры, при изменении режима ее работы, подключении нагрузок, случайных изменениях напряжения источников питания).

Режимы работы приборов должны контролироваться с учетом возможных неблагоприятных сочетаний условий эксплуатации аппаратуры (повышенная окружающая температура, пониженное давление окружающей среды и др.).

Если необходимое значение тока или напряжения превышает предельно допустимое для данною прибора значение, рекомендуется применение более мощною или высоковольтного прибора, а в случае диодов - их параллельное или последовательное соединение. При параллельном соединении необходимо выравнивать токи через диоды с помощью резисторов с небольшим сопротивлением, включаемых последовательно с каждым диодом. При последовательном включении диодов обратные напряжения на них выравниваются с помощью шунтирующих резисторов или конденсаторов. Рекомендуемые сопротивления и емкости шунтов обычно указываются в ТУ на диоды. Между последовательно или параллельно включенными приборами должна быть хорошая тепловая связь (например, все приборы устанавливаются на одном радиаторе). В противном случае распределение нагрузки между приборами будет неустойчивым.

При воздействии различных факторов (температуры, влаги, химических. механических и других воздействий) параметры, характеристики и некоторые свойства полупроводниковых приборов могут изменяться. Для защиты структур полупроводниковых приборов от внешних воздействий служат корпуса приборов. Корпуса мощных приборов одновременно обеспечивают необходимые условия отвода тепла, а корпуса СВЧ приборов - оптимальное соединение электродов приборов со схемой. Необходимо иметь в виду, что корпуса приборов имеют ограничения по герметичности и коррозионной устойчивости, поэтому при эксплуатации приборов в условиях повышенной влажности рекомендуется покрывать их специальными лаками (например, типа УР-231 или ЭП-730).

Обеспечение отвода тепла от полупроводниковых приборов является одной и; главных задач при конструировании радиоэлектронной аппаратуры. Необходимо придерживаться принципа максимально возможного снижения температуры переходов и корпусов приборов. Для охлаждения мощных диодов или тиристоров используются теплоотводящие радиаторы, работающие в условиях естественной конвекции или принудительного обдува, а также конструктивные элементы узлов и блоков аппаратуры, имеющие достаточную поверхность или хороший теплоотвод. Крепление приборов к радиатору должно обеспечивать падежный тепловой контакт. Если корпус прибора должен быть изолирован, то для уменьшения общего теплового сопротивления лучше изолировать радиатор от корпуса аппаратуры, чем диод или тиристор oт радиатора.

Отвод тепла улучшается при вертикальном расположении активных поверхностей радиатора, так как при этом лучше условия конвекции. Ориентировочные размеры теплоотводяших радиаторов в форме вертикально ориентированных пластин из алюминия (квадратных или прямоугольных) в зависимости от рассеиваемой ими мощности, можно определить но формуле

где S - площадь одной стороны пластины, см 2 ; Р - рассеиваемая в приборе мощность, Вт. Пластины площадью до 25 см 2 могут иметь толщину 1-2 мм, площадью от 25 до 100 см 2 2-3 мм. свыше 100 см 2 - 3 - 4 мм.

При заливке плат с полупроводниковыми приборами компаундами, пенопластами, пенорезиной необходимо учитывать изменение теплового сопротивления между корпусом прибора и окружающей средой, а также возможность увеличения дополнительного нагрева приборов от расположенных вблизи элементов схемы с большим тепловыделением. Температура при заливке не должна превышать максимальной температуры корпуса прибора, указанной в ТУ. При заливке не должны возникать механические нагрузки на выводы, нарушающие целостное 1Ь стеклянных изоляторов или корпусов приборов.

В процессе подготовки и проведения монтажа полупроводниковых приборов в аппаратуру механические и климатические воздействия на них не должны превышать значений, указанных в ТУ.

При рихтовке, формовке и обрезании выводов участок вывода около корпуса должен быть закреплен гак. чтобы в проводнике не возникали изгибающие или растягивающие усилия. Оснастка и приспособления для формовки выводов должны быть заземлены. Расстояние от корпуса прибора до начала изгиба вывода должно быть не менее 2 мм. Радиус изгиба при диаметре вывода до 0,5 мм должен быть не менее 0.5 мм, при диаметре 0,6-1 мм - не менее 1 мм. при диаметре свыше 1 мм - не.менее 1,5 мм.

Паяльники, применяемые для пайки выводов приборов, должны быть низковольтными. Расстояние от корпуса или изолятора до места лужения или пайки вывода должно быть не менее 3 мм. Для отвода тепла участок вывода между корпусом и местом пайки зажимается пинцетом с губками из красной меди. Жало паяльника должно быть надежно заземлено. Если температура припоя не превышает 533 + 5 К, а время пайки не более 3 с. то можно производить пайку без теплоотвода или групповым методом (волной, погружением в припой и др.).

Очистка печатных плат от флюса производится жидкостями. которые не влияют на покрытие, маркировку или материал корпуса (например, спирто-бензиновой смесью).

В процессе монтажа, транспортировки, хранения СВЧ приборов необходимо обеспечивать их защиту ог воздействия статического электричества. Для лого все измерительное, испытательное, монтажное оборудование и инструменты надежно за?емляю1ся: для снятия заряда с тела оператора применяются заземляющие браслеты или кольца. используются антистатическая одежда, обувь, покрытия столов рабочих мест.

Диоды СВЧ необходимо предохранять от воздействия внешних электрических наволок и электромагнитных полей. Не следует хранить или даже кратковременно оставлять СВЧ диоды без специальной экранирующей упаковки. Перед установкой СВЧ диодов в аппаратуру последняя должна быть заземлена. Входы и выходы СВЧ тракта в неработающем или хранящемся блоке аппаратуры с использованием СВЧ диодов должны выть перекрыты металлическими заглушками.

При эксплуатации аппаратуры должны быть приняты меры, предохраняющие СВЧ диоды от электрических СВЧ перегрузок, которые могут привести либо к необратимому ухудшению параметров. либо к полному отказу (выгоранию) диодов. Для защиты от СВЧ перегрузок в аппаратуре применяются резонансные разрядники, ферритовые oграничители, газоразрядные аттенюаторы.

СБОРКА ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

И ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Особенности процесса сборки

Сборка полупроводниковых приборов и интегральных микросхем является наиболее трудоемким и ответственным технологическим этапом в общем цикле их изготовления. От качества сборочных операций в сильной степени зависят стабильность электрических параметров и надежность готовых изделий.

Этап сборки начинается после завершения групповой обработки полупроводниковых пластин по планарной технологии и разделе­ния их на отдельные элементы (кристаллы). Эти кристаллы, могут иметь простейшую (диодную или транзисторную) структуру или включать в себя сложную интегральную микросхему (с большим количеством активных и пассивных элементов) и поступать на сборку дискретных, гибридных или монолитных композиций.

Трудность процесса сборки заключается в том, что каждый класс дискретных приборов и ИМС имеет свои конструктивные особенности, которые требуют вполне определенных сборочных операций и режимов их проведения.

Процесс сборки включает в себя три основные технологические операции: присоединение кристалла к основанию корпуса; присоединение токоведущих выводов к активным и пассивным элементам полупроводникового кристалла к внутренним элементам корпуса; герметизация кристалла от внешней среды.

Присоединение кристалла к основанию корпуса

Присоединение кристалла полупроводникового прибора или ИМС к основанию корпуса проводят с помощью процессов пайки, приплавления с использованием эвтектических сплавов и приклеи­вания.

Основным требованием к операции присоединения кристалла является создание соединения кристалл -основание корпуса, об­ладающего высокой механической прочностью, хорошей электро- и теплопроводностью.

Пайка - процесс соединения двух различных деталей без их расплавления с помощью третьего компонента, называемого при­поем. Особенностью процесса пайки является то, что припой при образовании паяного соединения находится в жидком состоянии, а соединяемые детали - в твердом.



На рис. 1, а показан вариант присоединения кристалла ИМС, имеющего медные облуженные кон­тактные выступы, к подложке. Та­кая конструкция выводов не боится растекания припоя по подложке. Наличие высокого грибообразного выступа обеспечивает необходимый зазор между полупроводниковым кристаллом и подложкой при расплавлении припоя. Это позволяет проводить присоединение кристалла к подложке с высокой степенью точ­ности.

На рис. 1, в показан вариант сборки кристаллов, имеющих мяг­кие столбиковые выводы из припоя на основе олово-свинец.

П
рисоединение такого кристалла к основанию корпуса проводят обычным нагревом без дополнитель­ного давления на кристалл. Припой контактных выступов при нагрева­нии и расплавлении не растекается по поверхности облуженных участ­ков основания корпуса за счет сил поверхностного натяжения. Это, кроме того, обеспечивает определен­ный зазор между кристаллом и под­ложкой.

Рассмотренный метод присоединения кристаллов ИМС к осно­ванию корпуса или к какой-либо плате позволяет в значительной степени механизировать и автоматизировать технологический про­цесс сборки.

Приплавление с использованием эвтектических сплавов. Этот способ присоединения полупроводниковых кристаллов к основанию корпуса основан на образовании расплавленной зоны, в которой происходит растворение поверхностного слоя полупроводникового материала и слоя металла основания корпуса.

В промышленности широкое применение получили два эвтекти­ческих сплава: золото-кремний (температура плавления 370°С) я золото-германий (температура плавления 356°С). Процесс эвтектического присоединения кристалла к основанию корпуса имеет две разновидности. Первый вид основан на использовании прокладки из эвтектического сплава, которая располагается между соединяемыми элементами: кристаллом и корпусом. В этом виде соединения поверхность основания корпуса должна иметь зо­лотое покрытие в виде тонкой пленки, а поверхность полупроводни­кового кристалла может не иметь золотого покрытия (для кремния и германия) или быть покрытой тонким слоем золота (в случае присоединения других полупроводниковых материалов). При на­греве такой композиции до температуры плавления эвтектического сплава между соединяемыми элементами (кристалл-основание корпуса) образуется жидкая зона. В этой жидкой зоне происходит с одной стороны растворение слоя полупроводникового материала кристалла (или слоя золота, нанесенного на поверхность кри­сталла).

После охлаждения всей системы (основание корпуса - эвтектический расплав-полупроводниковый кристалл) происходит за­твердевание жидкой зоны эвтектического сплава, а на границе полупроводник-эвтектический сплав образуется твердый раствор. В результате этого процесса создается механически прочное соеди­нение полупроводникового материала с основанием корпуса.

Второй вид эвтектического присоединения кристалла к основа­нию корпуса обычно реализуется для кристаллов из кремния или германия. В отличие от первого вида для присоединения кристал­ла не используется прокладка из эвтектического сплава. В этом случае жидкая зона эвтектического расплава образуется в резуль­тате нагрева композиции позолоченное основание корпуса-кри­сталл кремния (или германия). Рассмотрим подробнее этот процесс. Если на поверхность основания корпуса, имеющего тонкий слой золотого покрытия, поместить кристалл кремния, не имеющий золотого покрытия, и всю систему нагреть до температуры на 40-50°С выше температуры эвтектики золото-кремний, то между соединяемыми элементами образуется жидкая фаза эвтектического состава. Так как процесс сплавления слоя золота с кремнием явля­ется неравновесным, то количество кремния и золота, растворив­шихся в жидкой зоне, будет определяться толщиной золотого по­крытия, температурой и временем проведения процесса сплавления. При достаточно больших выдержках и постоянной температуре процесс сплавления золота с кремнием приближается к равновес­ному и характеризуется постоянным объемом жидкой фазы золо­то-кремний. Наличие большого количества жидкой фазы может привести к вытеканию ее из-под кристалла кремния к его перифе­рии. При затвердевании вытекшая эвтектика приводит к образова­нию достаточно больших механических напряжений и раковин в структуре кристалла кремния, которые резко снижают прочность сплавной структуры и ухудшают ее электрофизические параметры.

При минимальных значениях времени и температуры сплавление золота с кремнием происходит не равномерно по всей площади соприкосновения кристалла с основанием корпуса, а лишь в ее от­дельных точках.

В результате этого уменьшается прочность сплавного соедине­ния, увеличиваются электрическое и тепловое сопротивления кон­такта и снижается надежность полученной арматуры.

Существенное влияние на процесс эвтектического сплавления оказывает состояние поверхностей исходных соединяемых элемен­тов. Наличие загрязнений на этих поверхностях приводит к ухуд­шению смачивания контактирующих поверхностей жидкой фазой и неравномерному растворению.

Приклеивание -это процесс соединения элементов друг с дру­гом, основанный на клеящих свойствах некоторых материалов, которые позволяют получать механически прочные соединения между полупроводниковыми кристаллами и основаниями корпусов (металлическими, стеклянными или керамическими). Прочность склеивания определяется силой сцепления между клеем и склеива­емыми поверхностями элементов.

Склеивание различных элементов интегральных схем дает воз­можность соединять самые разнообразные материалы в различных сочетаниях, упрощать конструкцию узла, уменьшать его массу, снижать расход дорогостоящих материалов, не применять припоев и эвтектических сплавов, значительно упрощать технологические процессы сборки самых сложных полупроводниковых приборов и ИМС.

В результате приклеивания можно получать арматуры и слож­ные композиции с электроизоляционными, оптическими и токопроводящими свойствами. Присоединение кристаллов к основанию корпуса с помощью процесса приклеивания незаменимо при сборке и монтаже элементов гибридных, монолитных и оптоэлектронных схем.

При приклеивании кристаллов на основания корпусов применя­ют различные типы клеев: изоляционные, токопроводящие, светопроводящие и теплопроводящие. По активности взаимодействия между клеем и склеиваемыми поверхностями различают полярные (на основе эпоксидных смол) и неполярные (на основе полиэти­лена).

Качество процесса приклеивания в значительной степени зави­сит не только от свойств клея, но и от состояния поверхностей склеиваемых элементов. Для получения прочного соединения необ­ходимо тщательно обработать и очистить склеиваемые поверхно­сти. Важную роль в процессе склеивания играет температура. Так, при склеивании элементов конструкций, которые не подвергаются в последующих технологических операциях воздействию высоких температур, можно использовать клеи холодного отверждения на эпоксидной основе. Для приклеивания кремниевых кристаллов к металлическим или керамическим основаниям корпусов обычно используют клей ВК-2, представляющий собой раствор кремний-органической смолы в органическом растворителе с мелкодиспергированным асбестом в качестве активного наполнителя или ВК-32-200, в котором в качестве наполнителя используют стекло или кварц.

Технологический процесс приклеивания полупроводниковых кристаллов проводят в специальных сборочных кассетах, обеспе­чивающих нужную ориентацию кристалла на основании корпуса и необходимое прижатие его к основанию. Собранные кассеты в зависимости от используемого клеящего материала подвергают определенной термической обработке или выдерживают при ком­натной температуре.

Особые группы составляют электропроводящие и оптические клеи, используемые для склеивания элементов и узлов гибридных и оптоэлектронных ИМС. Токопроводящие клеи представляют собой композиции на основе эпоксидных и кремнийорганических смол с добавлением порошков серебра или никеля. Среди них наи­более широкое распространение получили клеи АС-40В, ЭК-А, ЭК-Б, К-3, ЭВТ и КН-1, представляющие собой пастообразные жидкости с удельным электрическим сопротивлением 0,01- 0,001 Ом-см и диапазоном рабочих температур от -60 до +150°С. К оптическим клеям предъявляют дополнительные требования по значению коэффициентов преломления и светопропускания. Наи­более широкое распространение получили оптические клеи ОК.-72 Ф, ОП-429, ОП-430, ОП-ЗМ.

Основными параметрами режима термокомпрессионной сварки являются удельное давление, температура нагрева и время сварки, Удельное давление выбирают в зависимости от допустимого на­пряжения сжатия кристалла полупроводника и допустимой дефор­мации материала привариваемого вывода. Время сварки выбирают экспериментальным путем.

Относительная деформация при термокомпрессионной сварке

,

где d-диаметр проволоки, мкм; b-ширина соединения, мкм.

Давление на инструмент определяют, исходя из распределения напряжений на стадии завершения деформации:

,

г

де A-коэффициент, характеризующий изменение напряжений в процессе деформации проволоки; f-приведенный коэффициент трения, характеризующий трение между инструментом, проволо­кой и подложкой; -относительная деформация; -предел те­кучести материала проволоки при температуре деформации; d- диаметр проволоки;D-диаметр прижимного инструмента, рав­ный обычно (2ч3)d.

Рис. 2. Номограмма для выбора режимов термокомпрессионной сварки:

а- золотой проволоки с плёнкой алюминия; б- алюминиевой проволоки с плёнкой алюминия

На рис. 2 приведены номограммы режимов термокомпрес­сионной сварки золотой (а) и алюминиевой (б) проволоки с алю­миниевыми контактными площадками. Эти номограммы дают воз­можность оптимального выбора соотношения между давлением, температурой и временем.

Термокомпрессионная сварка имеет довольно много разновид­ностей, которые можно классифицировать по способу нагрева, по способу присоединения, по форме инструмента. По способу нагре­ва различают термокомпрессионную сварку с раздельным нагревом иглы, кристалла или пуансона, а также с одновременным нагре­вом двух из этих элементов. По способу присоединения термоком­прессионная сварка может быть встык и внахлест. По форме инструмента различают «птичий клюв», «клин», «капилляр» и «иглу» (рис. 14.3).

При сварке инструментом «птичий клюв» одно и то же устройство подает проволоку, присоединяет ее к контактным площадкам интегральной схемы и автоматически обрывает, не выпуская ее из «клюва». Инструмент в виде «клина» прижимает конец проволоки к подложке, при этом вдавливается не вся проволока, а только центральная ее часть. При сварке с помощью «капиллярного инст­румента» проволока проходит через него. Капиллярный наконеч­ник одновременно служит инструментом, передающим давление на проволоку. При сварке «иглой» конец проволочного вывода подво­дят в зону сварки специальным механизмом и накладывают на контактную площадку, а затем прижимают ее иглой с определенным усилием.

Р

ис. 3. Типы инструментов для проведения термокомпрессионной сварки:

а- «птичий клюв»; б- «клин»; в- «капилляр»; г- «игла»

Для осуществления процесса термокомпрессионной сварки ис­пользуются различные установки, основными узлами которых являются: рабочий столик с нагревательной колонкой или без нее, механизм создания давления на присоединяемый вывод, рабочий инструмент, механизм подачи и обрыва проволоки для выводов, механизм подачи кристаллов или деталей с присоединенным к ним кристаллом; механизм совмещения соединяемых элементов, опти­ческая система визуального наблюдения процесса сварки, блоки питания и управления. Все перечисленные узлы могут иметь раз­личное конструктивное исполнение, однако принцип их устройства и характер выполняемой работы одинаков.

В настоящее время для присоединения выводов к контактным площадкам кристаллов интегральных схем используются два спо­соба электроконтактной сварки: с односторонним расположением двух электродов и с односторонним расположением одного сдвоен­ного электрода. Второй способ отличается от первого тем, что ра­бочие электроды выполнены в виде двух токонесущих элементов, разделенных между собой изоляционной прокладкой. В момент прижатия такого электрода к проволочному выводу и пропускания через образовавшуюся систему электродного тока происходит вы­деление большого количества теплоты в месте контакта. Внешнее давление в сочетании с разогревом деталей до температуры плас­тичности или расплавления приводит к прочному их соединению.

Механизм подачи кристаллов включает в себя набор кассет, а ме­ханизм совмещения-систему манипуляторов, которые позволяют располагать кристалл в нужном положении. Оптическая визуаль­ная система наблюдения состоит из микроскопа или проектора. Блок питания и управления позволяет задавать рабочий режим сварки и производить его перестройку и регулировку при смене типа кристалла и материала вывода.

Холодная сварка. Метод герметизации холодной сваркой широко используется в электронной промышленности. В тех случаях, когда при герметизации исходных деталей корпусов недопустим их на­грев и требуется высокая чистота процесса, применяют холодную сварку-сварку под давлением. Кроме того, холодная сварка обес­печивает прочное герметичное соединение наиболее часто исполь­зуемых разнородных металлов (меди, никеля, ковара и стали).

К недостаткам данного метода следует отнести наличие значи­тельной деформации деталей корпусов в месте соединения, что приводит к существенному изменению формы и габаритных разме­ров готовых изделий.

Изменение наружного диаметра корпуса прибора зависит от толщины исходных свариваемых деталей. Изменение наружного диаметра готового прибора после проведения процесса холодной сварки

где - толщина буртика верхней детали до сварки; - толщи­на буртика нижней детали до сварки.

Большое значение для проведения процесса холодной сварки имеет наличие на поверхности соединяемых деталей пленки оксида. Если эта пленка пластичная и более мягкая, чем основной металл, то под давлением она растекается во все стороны и утоньшается, разделяя тем самым чистые металлические поверхности, в резуль­тате чего сварка не происходит. Если оксидная пленка более хруп­кая и твердая, чем покрываемый ею металл, то под давлением она трескается, причем растрескивание происходит одинаково на обеих соединяемых деталях. Загрязнения, имевшиеся на поверхности пленки, оказываются упакованными с обеих сторон в своеобразные пакеты, прочно зажатые по краям. Дальнейшее увеличение давле­ния приводит к растеканию чистого металла к периферийным уча­сткам. Наибольшее растекание происходит в серединной плоскости образовавшегося шва, благодаря чему все пакеты с загрязнения­ми вытесняются наружу, а чистые поверхности металла, всту­пая в межатомные взаимодействия, прочно сцепляются друг с другом.

Таким образом, хрупкость и твердость-это основные качества оксидной пленки, обеспечивающие герметичное соединение. Так как у большинства металлов толщина покрытия оксидными плен­ками не превосходит 10-7 см, детали из таких металлов перед сваркой никелируют или хромируют. Пленки никеля и хрома об­ладают достаточной твердостью и хрупкостью и, следовательно, значительно улучшают сварное соединение.

Перед проведением процесса холодной сварки все детали обез­жиривают, промывают и сушат. Для образования качественного соединения двух металлических деталей необходимо обеспечить достаточную деформацию, пластичность и чистоту свариваемых деталей.

Степень деформации К при холодной сварке должна находить­ся в пределах 75-85%:

,

где 2Н-суммарная толщина свариваемых деталей; t-толщина сварного шва.

Прочность сварного соединения

где Р - усилие разрыва; D - диаметр отпечатка выступа пуансо­на; Н - толщина одной из свариваемых деталей с наименьшим размером; -предел прочности на растяжение с наименьшим значением.

Для деталей корпусов при холодной сварке рекомендуются сле­дующие сочетания материалов: медь МБ-медь МБ, медь МБ-медь М1, медь МБ-сталь 10, сплав Н29К18 (ковар) -медь МБ, ковар-медь М1.

Критические давления, необходимые для пластической дефор­мации и холодной сварки, например для сочетания медь-медь, составляют 1,5*109 Н/м2, для сочетания медь - ковар они равны 2*109 Н/м2.

Герметизация пластмассой. Дорогостоящую герметизацию стек­лянных, металлостеклянных, металлокерамических и металлических корпусов в настоящее время успешно заменяют пластмассовой герметизацией. }В ряде случаев это повышает надежность приборов и ИМС, так как устраняется контакт полупроводникового кристал­ла с газовой средой, находящейся внутри корпуса.

Пластмассовая герметизация позволяет надежно изолировать кристалл от внешних воздействий и обеспечивает высокую механи­ческую и электрическую прочность конструкции. Для герметизации ИМС широко используют пластмассы на основе эпоксидных, крем-нийорганических и полиэфирных смол.

Основными методами герметизации являются заливка, обвола­кивание и опрессовка под давлением. При герметизации заливкой используют полые формы, в которые помещают полупроводниковые кристаллы с припаянными внешними выводами. Внутрь форм за­ливают пластмассу.

При герметизации приборов обволакиванием берут два (или более) вывода, изготовленных из ленточного или проволочного ма­териала, соединяют их между собой стеклянной или пластмассовой бусой и на один из выводов напаивают полупроводниковый кри­сталл, а к другому (другим) выводу присоединяют электрические контактные проводники. Полученную таким образом сборку герме­тизируют обволакиванием пластмассой.

Наиболее перспективным путем решения проблемы сборки и герметизации приборов является герметизация кристаллов с актив­ными элементами на металлической ленте с последующей гермети­зацией пластмассой. Преимущество этого метода герметизации со­стоит в возможности механизации и автоматизации процессов сбор­ки различных типов ИМС. Основным элементом конструкции пласт­массового корпуса является металлическая лента. Для выбора профиля металлической ленты необходимо исходить из размеров кристаллов, тепловых характеристик приборов, возможности мон­тажа готовых приборов на печатную плату электронной схемы, максимальной прочности на отрыв от корпуса, простоты конст­рукции.

Технологическая схема пластмассовой герметизации прибора включает в себя основные этапы планарной технологии. Присоеди­няют полупроводниковые кристаллы с активными элементами к металлической ленте, покрытой золотом, эвтектическим сплавле-нием золота с кремнием или обычной пайкой. Металлическую ленту изготовляют из ковара, меди, молибдена, стали, никеля.

Приложения

Р

ис. 3. Схема сборки веерного типа

Р
ис. 4. Схема сборки с базовой деталью

Р

ис. 5. Схема сборки (а) и разрез ИС (б) в круглом корпусе:

1-балон; 2-соединительные проводники; 3-кристалл; 4-контактные площадки; 5-припой; 6-колпачёк ножки; 7-стекло; 8-выводы; 9-спай выводов со стеклом; 10-соединение электроконтактной сваркой баллона и ножки; 11-металлизационный слой (шина)

Рис. 6. Схема соединения (сборки) кристалла с шариковыми выводами и подложки пайкой:

1
-кристалл; 2-контактная площадка; 3-стекло; 4-шарик медный; 5-медная подушка; 6-припой (высокотемпературный); 7-припой (низкотемпературный); 8-вывод из сплава AgPb; 9-подложка.

Рис. 7. Схема соединения (сборки) кристалла с балочными выводами и подложки пайкой:

1-золотой балочный вывод; 2-силицид пластины; 3-кристалл; 4-нитрид кремния; 5-платина; 6-титан; 7-подложка; 8-золотая контактная площадка.

Рис. 8. Схема линии сборки интегральных схем

На линии сборки используют трансферные ленты. Сборка и транспортировка осуществляются на коваровой ленте, которую на участках Л и Б подвергают фотолитографии для получения выво­дов 2 (рис. 10, а). На участкахВ, Г и Д на базе ленты с выводны­ми рамками изготавливают корпуса приборов с золочеными выво­дами. Отрезки ленты с корпусами поступают на сборку. Лента 2, сматываясь с катушки 1, подвергается промывке и обезжириванию в ванне 3 и нанесению фоторезиста в ванне 4, экспонированию в установке 5 с помощью ультрафиолетовой лампы 7. Роль маски в установке выполняет непрерывно движущаяся синхронно с лентой 2лента 6. Затем ленты промывают в ваннах 8 и 9. Выводы рамки 2 (рис. 10, а) и перфорационные отверстия вытравливают в ванне 10. Слой фоторезиста удаляют в ванне 11, и на выходе ленту сушат. Полученные перфорационные отверстия используют для натяжения и перемещения ленты с помощью звездочки 12. В установке 13 на коваровую ленту с выводами приклеивают с двух сторон трансферную ленту со слоем припоечного стекла. Полученная система обжи­гается, адгезивный слой выгорает, а стекло спаивается с металлом основной ленты (рис. 10, б). Охлаждение до комнатной темпе­ратуры производят в камере 14. С помощью устройства 15 на стеклянные слои приклеивают маскирующие ленты с окнами, через ко­торые в ванне16 осуществляют вытравливание полостей до обна­ружения внутренних выводов (рис. 10, е).

П
олученные таким образом из металлической и стеклянных лент корпусные блоки подают в ванну 17 для золочения выводов. На устройстве 18 лента режется на отрезки с корпусами, которые по конвейеру 19 подаются на сборку. Кристалл с готовыми структура­ми методом перевернутого монтажа лицевой стороной вниз с по­мощью шариковых выступов присоединяют к системе выводов внут­ри полученного корпуса (рис. 10, г). Герметизацию корпуса в за­щитной среде производят отрезками коваровой ленты 7, которые припаивают к основанию с помощью стекла, нагреваемого инстру­ментом (рис. 10, д). Полученная микросхема представлена на рис. 10, е

Рис. 9. Трансферная лента:

1-несущий слой; 2-трансферный слой; 3-адгезивный слой; 4-антиадгезивная бумага

Р

ис. 10. Схема автоматизированной сборки ИС на ленте:

1-лента-носитель; 2- выводы (после травления); 3- перфорация для перемещения ленты; 4-стеклянная лента-припой; 5-полость корпуса ИС; 6-кристалл с гото­выми структурами; 7 - корпус; 8-крышка; 9-нагревательный инструмент

Сборка и герметизация микросхем и полупроводниковых приборов включает в себя 3 основные операции: присоединение кристалла к основанию корпуса, присоединение выводов и защиту кристалла от воздействия внешней среды. От качества сборочных операций зависят стабильность электрических параметров и надёжность конечного изделия. кроме того, выбор метода сборки влияет на суммарную стоимость продукта.

Присоединение кристалла к основанию корпуса

Основными требованиями при присоединении полупроводинкового кристалла к основанию корпуса являются высокая надёжность соединения, механическая прочность и в ряде случаев высокий уровень передачи тепла от кристалла к подложке. Операцию присоединения проводят с помощью пайки или приклеивания.

Клеи для монтажа кристаллов могут быть условно разделены на 2 категории: электропроводящие и диэлектрические. Клеи состоят из связующего вещества клеи и наполнителя. Для обеспечения электро- и теплопроводности в состав клея как правило вводят серебро в виде порошка или хлопьев. Для создания теплопроводящих диэлектрических клеев в качестве наполнителя используют стеклянные или ке-рамические порошки.

Пайка осуществляется с помощью проводящих стеклянных или металлических припоев.

Стеклянные припои - это материалы, состоящие из оксидов металлов. Они обладают хорошей адгезией к широкому спектру керамики, оксидов, полупроводниковых материалов, металлов и характеризуются высокой коррозионной стойкостью.

Пайка металлическими припоями осуществляется с помощью навесок или прокладок припоя заданной формы и размеров (пре-форм), помещаемых между кристаллом и подложкой. В массовом производстве применяется специализированная паяльная паста для монтажа кристаллов.

Присоединение выводов

Процесс присоединения выводов кристалла к основанию корпуса осуществляется с помощью про-волоки, ленты или жёстких выводов в виде шариков или балок.

Проволочный монтаж осуществляется термокомпресионной, электроконтактной или ультразвуковой сваркой с помощью золотой, алюминиевой или медной проволоки/лент.

Беспроволочный монтаж осуществляется в технологии «перевёрнутого кристалла» (Flip-Chip). Жёсткие контакты в виде балок или шариков припоя формируются на кристалле в процессе создания металлизации.

Перед нанесением припоя поверхность кристалла пассивируется. После литографии и травления, контактные площадки кристалла дополнительно металлизируются. Эта операция проводится для создания барьерного слоя, предотвращения окисления и для улучшения смачиваемости и адгезии. После этого формируются выводы.

Балки или шарики припоя формируются методами электролитического или вакуумного напыления, заполнения готовыми микросферами или методом трафаретной печати. Кристалл со сформированными выводами переворачивается и монтируется на подложку.

Защита кристалла от воздействия внешней среды

Характеристики полупроводникового прибора в сильной степени определяются состоянием его по-верхности. Внешняя среда оказывает существенное влияние на качество поверхности и, соответствен-но, на стабильность параметров прибора. данное воздействие изменяется в процессе эксплуатации, поэтому очень важно защитить поверхность прибора для увеличения его надёжности и срока службы.

Защита полупроводникового кристалла от воздействия внешней среды осуществляется на заклю-чительном этапе сборки микросхем и полупроводниковых приборов.

Герметизация может быть осуществлена помощью корпуса или в бескорпусном исполнении.

Корпусная герметизация осуществляется путём присоединения крышки корпуса к его основанию с помощью пайки или сварки. Металлические, метало-стеклянные и керамические корпуса обеспечива-ют вакуум-плотную герметизацию.

Крышка в зависимости от типа корпуса может быть припаяна с использованием стеклянных при-поев, металлических припоев или приклеена с помощью клея. Каждый из этих материалов обладает своими преимуществами и выбирается в зависимости от решаемых задач

Для бескорпусной защиты полупроводниковых кристаллов от внешних воздействий используют пластмассы и специальные заливочные компаунды, которые могут быть мягкими или твёрдыми после полимеризации, в зависимости от задач и применяемых материалов.

Современная промышленность предлагает два варианта заливки кристаллов жидкими компаундами:

  1. Заливка компаундом средней вязкости (glob-top, Blob-top)
  2. Создание рамки из высоковязкого компаунда и заливка кристалла компаундом низкой вязкости (Dam-and-Fill).

Основное преимущество жидких компаундов перед другими способами герметизации кристалла за-ключается в гибкости системы дозирования, которая позволяет использовать одни и те же материалы и оборудование для различных типов и размеров кристаллов.

Полимерные клеи различают по типу связующего вещества и по типу материала наполнителя.

Связующий материал

Органические полимеры, используемые в качестве адгезива, могут быть разделены на две основные категории: реактопласты и термопласты. Все они являются органическими материалами, но

существенно отличаются по химическим и физическим свойствам.

В реактопластах при нагреве полимерные цепи необратимо сшиваются в жёсткую трёхмерную сетчатую структуру. Возникающие при этом связи позволяют получать высокую адгезионную способность материала, но при этом ремонтопригодность ограничена.

В термопластичных полимерах не происходит отверждения. Они сохраняют способность к размягчению и расплавлению при нагреве, создавая прочные эластичные связи. Это свойство позволяет использовать термопласты в задачах, где требуется ремонтопригодность. Адгезионная способность термопластичных пластмасс ниже, чем у реактопластов, но в большинстве случаев вполне достаточна.

Третий тип связующего вещества - смесь термопластов и реактопластов, объединяющая в себе

преимущества двух типов материалов. Их полимерная композиция представляет собой взаимопроникающую сеть термопластичных и реактопластичных структур, что позволяет использовать их для создания высокопрочных ремонтопригодных соединений при относительно низких температурах (150 о С - 200 о С).

Каждая система имеет свои достоинства и недостатки. Одним из ограничений в использовании термопластичных паст является медленное удаление растворителя в процессе оплавления. Раньше для соединения компонентов с использованием термопластичных материалов требовалось провести процесс нанесения пасты (соблюдая плоскостность), сушки для удаления растворителя и только затем установки кристалла на подложку. Такой процесс исключал образование пустот в клеящем материале, но увеличивал стоимость и затруднял использование данной технологии в массовом производстве.

Современные термопластичные пасты обладают способностью очень быстрого испарения растворителя. Это свойство позволяет наносить их методом дозирования, используя стандартное оборудование, и устанавливать кристалл на ещё не высушенную пасту. Далее следует этап быстрого низкотемпературного нагрева, во время которого растворитель удаляется, и после оплавления создаются адгезионные связи.

Долгое время имелись сложности с созданием высоко теплопроводящих клеев на основе термопластов и реактопластов. Данные полимеры не позволяли увеличивать содержание теплопроводящего наполнителя в пасте, поскольку для хорошей адгезии требовался высокий уровень связующего вещества (60-75%). Для сравнения: в неорганических материалах доля связующего вещества могла быть уменьшена до 15-20%. Современные полимерные клеи (Diemat DM4130, DM4030, DM6030) лишены этого недостатка, и содержание теплопроводящего наполнителя достигает 80-90%.

Наполнитель

Основную роль в создании тепло-, электропроводящего адгезива играют тип, форма, размер и количество наполнителя. В качестве наполнителя используется серебро (Ag) как химически стойкий материал с наиболее высоким коэффициентом теплопроводности. Современные пасты содержат в себе

серебро в виде порошка (микросферы) и хлопьев (чешуек). Точный состав, количество и размер частиц экспериментально подбираются каждым производителем и в сильной степени определяют теплопроводящие, электропроводящие и клеящие свойства материалов. В задачах, где требуется диэлектрик с теплопроводящими свойствами, в качестве наполнителя используется керамический порошок.

При выборе электропроводящего клея следует принимать во внимание следующие факторы:

  • Тепло-, электропроводность используемого клея или припоя
  • Допустимые технологические температуры монтажа
  • Температуры последующих технологических операций
  • Механическая прочность соединения
  • Автоматизация процесса монтажа
  • Ремонтопригодность
  • Стоимость операции монтажа

Кроме того, при выборе адгезива для монтажа следует обращать внимание на модуль упругости полимера, площадь и разность КТР соединяемых компонентов, а также толщину клеевого шва. Чем ниже модуль упругости (чем мягче материал), тем большие площади компонентов и большая разница КТР соединяемых компонентов и более тонкий клеевой шов допустимы. Высокое значение модуля упругости вносит ограничение в минимальную толщину клеевого шва и размеры соединяемых компонентов из-за возможности возникновения больших термомеханических напряжений.

Принимая решение о применении полимерных клеев, необходимо учитывать некоторые технологические особенности этих материалов и соединяемых компонентов, а именно:

  • длина кристалла (или компонента) определяет величину нагрузки на клеевой шов после охлаждения системы. Во время пайки кристалл и подложка расширяются в соответствии со своими КТР. Для кристаллов большого размера необходимо использовать мягкие (с низким модулем упругости) адгезивы или согласованные по КТР материалы кристалла/подложки. Если различие КТР слишком велико для данного размера кристалла, соединение может быть нарушено что приведет к отслаиванию кристалла от подложки. Для каждого типа пасты производитель, как правило, даёт рекомендации по максимальным размерам кристалла для определённых значений разницы КТР кристалла/подложки;
  • ширина кристалла (или соединяемых компонентов) определяет расстояние, которое проходит растворитель, содержащийся в адгезиве, до того как покинет клеевой шов. Поэтому размер кристалла должен учитываться и для правильного удаления растворителя;
  • металлизация кристалла и подложки (или соединяемых компонентов) не обязательна. Обычно полимерные клеи имеют хорошую адгезию ко многим неметаллизированым поверхностям. Поверхности должны быть очищены от органических загрязнений;
  • толщина клеевого шва. Для всех адгезива, содержащих тепло- , электропроводящий наполнитель, существует ограничение по минимальной толщине клеевого шва dx (см. рисунок). Слишком тонкий шов не будет иметь достаточно связующего вещества, чтобы покрыть весь наполнитель и сформировать связи с соединяемыми поверхностями. Кроме того, для материалов с высоким модулем упругости толщина шва может ограничиваться различными КТР для соединяемых материалов. Обычно для клеев с низким модулем упругости рекомендуемая минимальная толщина шва составляет 20-50 мкм, для клеев с высоким модулем упругости 50-100 мкм;

  • время жизни адгезива до установки компонента. После нанесения адгезива растворитель из пасты начинает постепенно испаряться. Если клей высыхает, то не происходит смачивания и приклеивания соединяемых материалов. Для компонентов малого размера, где отношение площади поверхности к объёму нанесённого клея велико, растворитель испаряется быстро, и время после нанесения до установки компонента необходимо минимизировать. Как правило, время жизни до установки компонента для различных клеев варьируется от десятков минут до нескольких часов;
  • время жизни до термического отверждения клея отсчитывается от момента установки компонента до помещения всей системы в печь. При длительной задержке может происходить расслоение и растекание клея, что негативным образом сказывается на адгезии и теплопроводности материала. Чем меньше размер компонента и количество нанесённого клея, тем быстрее он может высохнуть. Время жизни до термического отверждения клея может варьироваться от десятков минут до нескольких часов.

Выбор проволоки, лент

Надёжность проволочного/ленточного соединения в сильной степени зависит от правильного вы-бора проволоки/ленты. Основными факторами определяющими условия применения того или иного типа проволоки являются:

Тип корпуса . В герметичных корпусах используется только алюминиевая или медная проволока, поскольку золото и алюминий образуют хрупкие интерметаллические соединения при высоких темпе-ратурах герметизации. Однако для негерметичных корпусов используется только золотая проволока/ лента, поскольку данный тип корпуса не обеспечивает полную изоляцию от влаги, что приводит к коррозии алюминиевой и медной проволоки.

Размеры проволоки/лент (диаметр, ширина, толщина) более тонкие проводники требуются для схем с малыми контактными площадками. С другой стороны, чем выше ток, протекающий через соединение, тем большее сечение проводников необходимо обеспечить

Прочность на разрыв . Проволока/ленты подвергаются внешнему механическому воздействию в течение последующих этапов и в процессе эксплуатации, поэтому, чем выше прочность на разрыв, тем лучше.

Относительное удлинение . Важная характеристика при выборе проволоки. Слишком высокие значения относительного удлинения усложняют контроль формирования петли при создании прово-лочного соединения.

Выбор метода защиты кристалла

Герметизация микросхем может быть осуществлена помощью корпуса или в бескорпусном исполнении.

При выборе технологии и материалов, которые будут использоваться на этапе герметизации, следу-ет принимать во внимание следующие факторы:

  • Необходимый уровень герметичности корпуса
  • Допустимые технологические температуры герметизации
  • Рабочие температуры микросхемы
  • Наличие металлизации соединяемых поверхностей
  • Возможность использования флюса и специальной атмосферы монтажа
  • Автоматизация процесса герметизации
  • Стоимость операции герметизации

В статье приведён обзор технологий и материалов, применяемых для формирования столбиковых выводов на полупроводниковых пластинах при производстве микросхем.

Поделиться