Дефектоскопия труб. Методика контроля состояния труб и сварных соединений Как осуществляется ультразвуковой контроль газопроводов

В сфере строительства используются трубы диаметром от 28 до 1420 мм с толщиной стенки от 3 до 30 мм. По дефектоскопичности весь диапазон диаметров труб можно условно разбить на три группы:

  1. 28...100 мм и Н = 3...7 мм
  2. 108...920 мм и Н= 4...25 мм
  3. 1020...1420 мм и Н= 12...30 мм

Проведенные специалистами МГТУ им. Н.Э. Баумана исследования показывают, что необходимо учитывать анизотропию упругих свойств материала при разработке методик ультразвукового контроля сварных стыков труб.

Особенности анизотропии трубной стали.

Предполагается, что скорости распространения поперечных волн не зависят от направления прозвучивания и постоянны по сечению стенки трубы. Но при ультразвуковом контроле сварных соединений магистральных газопроводов, выполненных из зарубежных и российских труб, выявлены значительный уровень акустических шумов, пропуск крупных корневых дефектов, а также неправильная оценка их координат.

Установлено, что при соблюдении оптимальных параметров контроля и соблюдении процедуры его проведения основной причиной пропуска дефекта является наличие заметной анизотропии упругих свойств основного материала, что оказывает влияние на скорость, затухание, отклонение от прямолинейности распространения ультразвукового пучка.

Прозвучив металл более чем 200 труб по схеме, представленной на рис. 1, выявлено, что среднеквадратичное отклонение скорости волны при данном направлении распространения и поляризации составляет 2 м/с (для поперечных волн). Отклонения скоростей от табличных на 100 м/с и более не случайны и связаны скорее всего с технологией производства проката и труб. Отклонения в таких масштабах значительно влияют на распространение поляризованных волн. Помимо описанной анизотропии, выявлена неоднородность скорости звука по толщине стенки трубы.

Рис. 1. Обозначения наплавлений в металле трубы: X, Y, Z.- направления распространения ультразвука: х. у.z:- направления поляризации; Y- направление проката: Z- перпендикуляр к плоскости трубы

Листовой прокат обладает слоистой текстурой, представляющей собой в волокна металла и неметаллических включений, вытянутые в процессе деформации. Неодинаковые по толщине зоны листа подвержены различным деформациям в результате воздействия на металл термомеханического цикла прокатки. Это ведет к тому, что на скорость звука дополнительно влияет глубина залегания прозвучиваемого слоя.

Контроль сварных швов труб различного диаметра.

Трубы диаметром 28...100 мм.

Сварные швы у труб диаметром от 28 до100 мм и высотой от 3 до 7 мм имеют такую особенность как образование провисаний внутри трубы, это при контроле прямым лучом приводит к появлению на экране дефектоскопа ложных эхо-сигналов, которые совпадают по времени с эхо-сигналами, отраженными от надкорневых дефектов, которые обнаруживаются однократно отраженным лучом. Так как эффективная ширина пучка соразмерна с толщиной стенки трубы, то отражатель обычно не удается найти по местоположению искателя относительно валика усиления. Также имеет место также наличие неконтролируемой зоны в центре шва из-за большой ширины валика шва. Все это ведет к тому, что вероятность обнаружения недопустимых объемных дефектов невелика (10-12%), но недопустимые плоскостнные дефекты определяются гораздо надежнее (~ 85 %). Главные параметры провисания (ширина, глубина и угол смыкания с поверхностью изделия) считаются случайными величинами для данного типоразмера труб; средние значения параметров составляют 6,5 мм; 2,7 мм и 56°30" соответственно.

Прокат ведет себя как неоднородная и анизотропная среда с достаточно сложными зависимостями скоростей упругих волн от направления прозвучивания и поляризации. Изменение скорости звука близко симметрично относительно середины сечения листа, причем вблизи этой середины скорость поперечной волны может значительно (до 10 %) уменьшаться относительно окружающих областей. Скорость поперечной волны в исследуемых объектах меняется в диапазоне 3070...3420 м/с. На глубине до 3 мм от поверхности проката вероятно незначительное (до 1 %) увеличение скорости поперечной волны.

Помехоустойчивость контроля значительно усиливается при использовании наклонных раздельно-совмещенных ПЭП типа РСН (рис. 2), названных хордовыми. Они были созданы в МГТУ им. Н.Э. Баумана. Особенность контроля состоит в том, что при выявлении дефектов не нужно поперечноге сканирование, оно нужно только по периметру трубы при прижатии к шву передней грани преобразователя.

Рис. 2. Наклонный хордовый РСН-ПЭП: 1- излучатель: 2 - приемник

Трубы диаметром 108...920 мм.

Трубы диаметром 108-920 мм и с Н в диапазоне 4-25 мм также совершают односторонней сваркой без обратной подварки. До последнего времени контроль над этими соединениями контролировались совмещенными ПЭП по методике, изложенной для труб диаметром 28-100 мм. Но известная методика контроля предполагает наличие существенно большой зоны совпадений (зоны неопределенности).Это ведет к незначительности достоверности оценки качества соединения. Совмещенные ПЭП обладают высоким уровнем реверберационных шумов, осложняющих расшифровку сигналов, и неравномерность чувствительности, которую не всегда получается компенсировать имеющимися средствами. Использование хордовых раздельно-совмещенных ПЭП для контроля данного типоразмера сварных соединений не эффективно в связи с тем, что из-за ограниченности значений углов ввода ультразвуковых колебаний с поверхности сварного соединения габариты преобразователей несоразмерно увеличиваются, увеличивается и площадь акустического контакта.

Созданные в МГТУ им. Н.Э. Баумана наклонные ПЭП с выравненной чувствительностью используются для контроля сварных стыков диаметром более 10 см. Выравнивание чувствительности добиваются выбором угла разворота 2 так, чтобы середина и верхняя часть шва прозвучивались центральным однократно отраженным лучом, а нижняя часть обследовалась прямыми периферийными лучами, падающими на дефект под углом Y, от центрального. На рис. 3. изображен график зависимости угла ввода поперечной волны от угла разворота и раскрытия диаграммы направленности Y. Здесь в ПЭП падающая и отраженная от дефекта волны горизонтально поляризованные (SН -волна).

Рис. 3. Изменение угла ввода альфа, в пределе половины угла раскрытия диаграммы направленности РСН-ПЭП в зависимости от угла разворота дельта.

Из графика видно, что при контроле изделий Н =25 мм неравномерность чувствительности РС-ПЭП может составлять до 5 дБ, а для совмещенного ПЭП она может достигнуть 25 дБ. РС-ПЭП обладает повышенным уровнем сигнала и имеет повышенную абсолютную чувствительность. РС-ПЭП четко выявляется зарубка площадью 0,5 мм2 при контроле сварного соединения толщиной 1 см как прямым, так и однократно отраженным лучом при отношении полезный сигнал/помеха 10 дБ. Процесс проведения контроля рассмотренными ПЭП аналогичен процедуре проведения совмещенным ПЭП.

Трубы диаметром 1020...1420 мм.

Для выполнения сварных стыков труб диаметром от 1020 и 1420 мм с Н в диапазоне от 12 до30 мм используют двустороннюю сварку или сварку с подваркой обратного валика шва. В швах, сделанных двусторонней сваркой чаще всего ложные сигналы от задней кромки валика усиления имеют меньшую помеху, чем в односторонних швах. Они меньше по амплитуде из-за более плавных очертаний валика и дальше по развертке. В связи с этим для дефектоскопии это наиболее удобный типоразмер труб. Но проведенные в МГТУ им. Н.Э. Баумана исследования показывают, что металл этих труб характеризуется наибольшей анизотропией. В целях минимизации влияния анизотропии на выявляемость дефектов лучше всего использовать ПЭП на частоту 2,5 МГц с углом призмы 45°, а не 50°, как советуется в большинстве нормативных документов на контроль подобных соединений. Более высокая достоверность контроля достигнута при применении ПЭП типа РСМ-Н12. Но в отличие от способа, изложенного для труб диаметром 28-100 мм, при контроле данных соединений нет зоны неопределенности. В остальном принцип контроля остается таким же. При применении РС-ПЭП настройку скорости развертки и чувствительности рекомендуется производить по вертикальному сверлению. Настройка скорости развертки и чувствительности наклонных совмещенных ПЭП должна производится по угловым отражателям соответствующего размера.

Осуществляя контроль сварных швов необходимо помнить что в околошовной зоне могут случаться расслоения металла, которые усложняют определение координат дефекта. Зону с найденным наклонным ПЭП дефектом необходимо проверить прямым ПЭП для уточнения особенностей дефекта и выявления истинного значения глубины дефекта.

В нефтехимической промышленности, атомной энергетике для производства трубопроводов, сосудов нашли широкое применение плакированные стали. В качестве плакировки внутренней стенки таких конструкций берутся аустенитные стали наносимые методом наплавки, прокатки или взрыва толщиной в 5-15 мм.

Метод контроля данных сварных соединений предуполагает оценку сплошности перлитной части сварного шва, в том числе и зоны сплавления с восстановительной антикоррозионной наплавкой. Сплошность тела самой наплавки контролю не подлежит.

Но из-за отличия акустических качеств основного металла и аустенйтной стали от границы раздела при узи контроле появляются эхо-сигналы, образующие помехи обнаружению таких дефектов, как отслоений плакировки и поднаплавочных трещин. Наличие плакировки значительно влияет на параметры акустического тракта ПЭП.

В связи с этим для проведения контроля толстостенных сварных швов плакированных трубопроводов стандартные технологические решения не дают должного результата.

Многолетний исследования ряда специалистов: В.Н. Радько, Н.П. Разыграева, В.Е. Белого, В.С. Гребенника и др позволили определить главные особенности акустического тракта, разработать рекомендации по оптимизации его параметров, создать технологию узи контроля сварных швов с аустенитной плакировкой.

В работах специалистов установлено, что при переотражении пучка ультразвуковых волн от границы перлит-аустенитная плакировка диаграмма направленности почти не именяется в ситуации плакировки прокаткой и значительно деформируется в случае осуществления плакировки наплавкой. Ее ширина резко возрастает, а в пределах главного лепестка появляются осцилляции в 15-20 дБ в зависимости от типа наплавки. Имеет место быть значительное смещение точки выхода отражения от границы плакировки пучка по сравнению с его геометрическими координатами и перемена скорости поперечных волн в переходной зоне.

С учетом этих особенностей технология контроля сварных соединений плакированных трубопроводов предполагает предварительное обязательное измерение толщины перлитной части.

Лучшего нахождения плоскостных дефектов (трещин и несплавлений) достигается при помощи применения ПЭП с углом ввода 45° и на частоты 4 МГц. Лучшая выявляемость вертикально ориентированных дефектов на угле ввода 45° по сравнению с углами 60 и 70° обусловлена тем, что при прозвучивании последними угол встречи пучка с дефектом близок к 3-му критическому, при котором коэффициент отражения поперечной волны является наименьшим.

На частоте 2 МГц при прозвучивании снаружи трубы эхо-сигналы от дефектов экранируются интенсивным и длительным сигналом шума. Помехоустойчивость ПЭП на частоту 4 МГц в среднем на 12 дБ выше, а значит полезный сигнал от дефекта, располагающегося в непосредственной близости от границы наплавки, станет лучше разрешаться на фоне помех.

При прозвучивании изнутри трубы через наплавку максимальная помехоустойчивость устанавливается при настройке ПЭП на частоту 2 МГц.

Метод контроля сварных швов трубопроводов с наплавкой регламентируется руководящим документом Госатомнадзора РФПНАЭГ-7-030-91.

Для промышленных инженерных коммуникаций введен ряд стандартов, подразумевающих довольно жесткую проверку соединений. Эти методики переносятся на системы, находящиеся в частном владении. Применение методов позволяет избежать аварийных ситуаций и провести наружный и скрытый монтаж с требуемым уровнем качества.

Входной контроль

Входной контроль труб проводится для всех типов материалов, включая металлопластиковые, полиэтиленовые и полипропиленовые после покупки изделий.

Упоминаемые стандарты подразумевают проверку труб, независимо от материала, из которого они изготовлены. Входной контроллинг подразумевает правила проверки получаемой партии. Проверка сварных соединений проводится в рамках приемки работ по монтажу коммуникаций. Описываемые способы обязательны к применению строительно-монтажными организациями при сдаче жилых, коммерческих и промышленных объектов с системами водоснабжения и отопления. Похожие способы применяются, где необходим контроль качества труб в коммуникациях промышленного типа, действующих в составе оборудования.

Последовательность проведения и методики

Приемка продукции после поставки является важным процессом, впоследствии гарантирующим отсутствие нерациональных затрат на замену трубной продукции и аварий. Тщательной проверке подлежит, как количество продукции, так и ее особенности. Количественная проверка позволяет учитывать весь расход продукции и избежать лишних затрат, связанных с завышенными нормами и нерациональным использованием. Нельзя упускать и влияние человеческого фактора.

Работы проводятся в соответствии с разделом № 9 стандарта СП 42-101-96.

Последовательность входных мероприятий следующая:

  • Проверка сертификата и соответствия маркировки;
  • Выборочные испытания образцов проводятся при сомнениях в качестве. Исследуется величина предела текучести при растяжении и удлинении при механическом разрыве;
  • Даже при отсутствии сомнений в поставке отбирается небольшое количество образцов для испытаний, в пределах 0,25-2% партии, но не менее 5 шт. При использовании продукции в бухтах, отрезают 2 м;
  • Проводится осмотр поверхности;
  • Осматривается на предмет вздутий и трещин;
  • Измеряют типовые размеры толщин и стенок микрометром или штангенциркулем.

При официальной проверке коммерческой или государственной организацией по факту проведения процедуры составляется протокол.

Неразрушающий контроль – особенности

Неразрушающие способы используются в функционирующих системах инженерных коммуникации. Особенное внимание уделяется реальному состоянию металла и сварным соединениям. Безопасность эксплуатации определяется качеством сварки швов. При длительной эксплуатации исследуется степень повреждения конструкции между соединениями. Они могут быть повреждены ржавчиной, что приводит к истончению стенок, а засорение полости может привести к повышению давления и прорыву трубопровода.

Для этих целей предложено специализированное оборудование – дефектоскопы (например, ультразвуковые), которые могут применяться для проведения работ в частных и коммерческих целях.

В исследованиях трубопроводов применяют методы контроля труб:


С помощью данного оборудование отслеживается развитие трещин или нарушение целостности. Причем основным достоинством является определение скрытых дефектов. Очевидно, что каждый из этих методов показывает высокую эффективность на определенных видах повреждений. Вихретоковый дефектоскоп в какой-то степени является универсальным и оптимальным по стоимости.

Ультразвуковой контроль труб – более дорогое удовольствие и требовательно, но очень популярно среди специалистов благодаря сформировавшемуся стереотипу. Многие сантехники используют капиллярный и магнитопорошковый метод, который применим для всех видов трубной продукции, включая полиэтиленовые и полипропиленовые. Среди специалистов популярно средство Testex для проверки герметичности сварки.

Заключение

Из предложенных способов неразрушающего контроля все 4 варианта успешно используются на практике, но не обладают абсолютной универсальностью. Система контроля труб включает в себя все виды дефектоскопов для проведения работ. Некоторой степенью универсальности обладает ультразвуковой способ, а также методика, основанная на вихревых токах. Причем вихревой вариант оборудования обходится значительно дешевле.

В течение длительного периода использования, трубопроводы попадают под негативное внешнее и внутреннее воздействие окружающей среды. В итоге – металл деградирует, на нем образуются коррозийные образования, появляются трещины и сколы, и другие типы дефектов. Казалось бы, при создании проекта трубопровода используя современные технологии, должна быть обеспеченна полная защита магистральных коммуникаций.

Но, к сожалению, исключить в полной мере возникновение повреждений невозможно. Чтобы небольшие дефекты не превратились в серьезную проблему, используют различные виды контроля.

Одним из них, который не предусматривает вывода в ремонт магистральной системы – является дефектоскопия трубопроводов.

Этот метод диагностики получил широкое распространение. Его применение позволяет выявить следующие виды дефектов:

  • потеря уровня герметичности;
  • потеря контроля состояния напряженности;
  • нарушение сварных стыков;
  • разгерметизация сварных швов другие параметры, которые ответственны за надежное функционирование магистралей.

Проверять таким образом можно:

  • теплосеть;
  • газоподающую сеть;
  • нефтепроводы;
  • водоподающие трубопроводы и др.

Дефектоскопия на 100% способна выявить недостатки и предупредить серьезные аварии. , и испытываются новые модели дефектоскопов. Плюс ко всему этому проводятся различные анализы для того, что бы в последствие улучшить работу средств.

Ультразвуковая дефектоскопия

Ультразвуковая дефектоскопия трубопровода впервые была предоставлена Соколовым С.Я. в 1928 году. Она создана на основе изучения передвижения ультразвуковых колебаний,
которые находились под контролем дефектоскопа.

Описывая принцип работы этих устройств, необходимо отметить, что волна звука не меняет направление своего передвижения в среде, имеющем одинаковую структуру. Когда среда разделяется удельным акустическим препятствием, то получается отражение волны.

Видео:

Чем выше количество таких препятствий, тем больше волн будет отражена от границы, которая разделяет среду. Возможность обнаружить небольшие дефекты отдельно один от другого определяет длина звуковой волны. А она при этом зависима от того, насколько часты звуковые колебания.

Многообразные задачи, стоящие при проведении ультразвуковой дефектоскопии, привели к тому, что появились большие возможности этого способа поиска неисправностей. Из них выделяют пять основных вариантов:

  1. Эхо – локация.
  2. Теневой метод.
  3. Зеркально-теневой.
  4. Зеркальный.
  5. Дельта – способ.

Приборы современного производства для ультразвуковой проверки оснащают несколькими возможностями измерения одновременно. И делают это в разных сочетаниях.

Эти механизмы отличаются очень высокой точностью, в результате остаточное пространственное разрешение и достоверность итогового вывода о дефективности трубопровода или его деталей получается максимально правдивым.

Ультразвуковой анализ не приносит повреждений исследуемой конструкции, и дает возможность провести все работы с максимально быстро и без вреда человеческому здоровью.

Ультразвуковая дефектоскопия – это доступная во всех отношениях система контроля мест соединения и швов. То, что в основе этого метода положена высокая возможность проникновения ультразвуковых волн сквозь металл.

Анализ сварных швов

Дефектоскопия сварных швов трубопроводов является обязательной процедурой перед запуском в эксплуатацию магистральных коммуникаций, особенно проходящих под землей.

В любой конструкции сварной шов являлся слабым местом, по этим причинам их качество всегда должно быть под контролем. На сварных швах лежит важная ответственность – они определяют герметичность и качество готового сооружения в целом.

Суть различных подходов для анализа таких стыков состоит в оценке тех или других физических свойств, характеризующих надежность и прочность трубопровода. Дефектоскопия определяет не только размер дефектов, но и оценивает качественное состояние швов. В эту оценку входит:

  1. показатель прочности;
  2. возможность противостоять коррозийным образованиям;
  3. степень пластичности;
  4. структура металла шовного соединения и области возле него;
  5. количество о габариты дефекта.

Способ ультразвукового исследования – это один из основных методов выявления дефектов на сварных швах.

Видео: Обзор дефектоскопа магнитопорошкового

Дефектоскопия сварных соединений трубопроводов имеет следующие преимущества.

  • Быстрое проведение ревизии.
  • Высокая точность исследования.
  • Небольшая стоимость.
  • Абсолютная безвредность для человека.
  • Мобильность используемых для проверки устройств.
  • Возможность выполнять проверку качества функционирующего трубопровода.

Самая простая процедура дефектоскопии – это визуальный осмотр. Визуально – измерительный способ позволяет на основе первых полученных результатов при внешнем осмотре определить наличие многих дефектов.

С помощью данного осмотра проверяют уровень качества готовых сварных стыков. Этот вид исследования применяют независимо от других типов контроля. Чаще всего он является очень информативным, и кроме этого, он самый дешевый.

Этим методом выявляют отклонения от номинальных размеров. При этом поверхность трубопровода тщательно очищают от грязи, металлических брызг, ржавых образований, окалины, масла и прочих загрязнений.

В зону внимания попадают сварные швы и прилегающая к ним зона. Все найденные на этом этапе недостатки устраняют до выполнения иных способов дефектоскопии.

Например, заметно выраженные различия в высоте сварного шва свидетельствуют о том, что дуга во время сварочных работ прерывалась.

На период проверочных мероприятий такие стыки рекомендуют обработать 10% раствором азотной кислоты. Если будут заметны грубые геометрические нарушения, то это свидетельствует о нарушении качества сварного шва.

Видео: В видео представлен краткий обзор ультразвуковых приборовTG 110-DL, Avenger EZ

Преимущества данного метода исследования следующие:

  • Чаще всего на такую операцию нужно немного времени.
  • Небольшая стоимость проверки.
  • Безопасность данной процедуры для человеческого здоровья.
  • Можно проверить действующий трубопровод.

Ну и куда же без недостатков:

  • Возможность разрушающего действия.
  • Потребность в спецреактивах и иных расходных материалах.
  • Опытные образцы после этого процесса не всегда подлежали восстановлению.

Дефектоскопия стыков трубопроводов

Дефектоскопия соединений трубопроводов – это довольно ответственный процесс, который начинают только после того, как сварной шов готовый. Место состыковки должно остыть и его необходимо очистить от загрязнений.

Еще одним методом проверки является цветная дефектоскопия трубопроводов, ее по-другому называют капиллярный контроль. В основе данной проверке лежит капиллярная активность жидкости. Поры и потрескавшиеся образования создают сетку в стыке.

Когда они контактируют с жидкостью, то они просто пропускают ее сквозь себя. Такой способ дает возможность обнаружить скрытие проблемные образования. Проводят такую процедуру в соответствии к ГОСТу 1844-80.

Часто для этого вида поверки применяют магнитную дефектоскопию . В ее основу положили такое явление, как электромагнетизм. Возле проверяемой зоны механизм создает магнитное поле. Его линии свободно проходят сквозь металл, но когда присутствует повреждение, то линии теряют ровность.

Видео: Проведение внутритрубной диагностики магистральных трубопроводов

Чтобы зафиксировать полученное изображение, используют магнитографическую или магнитопорошковую дефектоскопию. Если применяют порошок, то его накладывают сухим или в виде влажной массы (в нее добавляют масло). Порошок станет скапливаться только в проблемных местах.

Внутритрубная проверка

Внутритрубная дефектоскопия магистральных трубопроводов – это самый эффективный вариант обнаружения проблем, основанный на прогоне по системе труб спецустройств.

Ими стали внутритрубные дефектоскопы, с установленными специальными приборами. Эти механизмы определяют конфигурационные особенности поперечного сечения, выявляют вмятины, утончения и коррозийные образования.

Также есть внутритрубные механизмы, которые созданы для решения конкретных заданий. Например, оборудование, имеющее видео и фотокамеры, инспектирует внутреннюю часть магистрали и определяет степень кривизны и профиль конструкции. Также оно обнаруживает трещины.

Эти агрегаты передвигаются по системе потоком и оснащаются разнообразными датчиками, они накапливают и хранят информацию.

Внутритрубная дефектоскопия магистральных трубопроводов имеет весомые преимущества. Она не выставляет требований ставить устройства, которые ведут систематический контроль.

К сказанному необходимо добавить, что, используя это вид диагностики, можно производить регулярный контроль деформационных изменений по всему участку действующей конструкции с высоким уровнем производительности.

Таким путем можно вовремя установить участок, который несет аварийную угрозу всей системе, и своевременно провести ремонтные работы по устранению неполадок.

Говоря об этом методе, важно заметить, что есть ряд технических трудностей по его внедрению. Основное – он является дорогим. А второй фактор – это наличие устройств только для магистральных трубопроводов с большими объемами.

Видео

По этим причинам этот метод чаще всего применяют для относительно новых газопроводных систем. Внедрить этот способ для других магистралей можно посредством выполнения реконструкции.

Помимо оговоренных технических трудностей, этот метод отличается максимально точными показателями с обработкой проверочных данных.

Для исследования магистральных трубопроводов не обязательно выполнять все процедуры, чтобы убедиться в отсутствии проблем. Каждый участок магистрали можно проверить тем или другим наиболее подходящим способом.

Чтобы выбрать оптимальный вариант проверки нужно оценить, насколько важна ответственность стыка. И уже, исходя из этого, подбирать метод исследования. Например, для домашнего производства часто хватает визуального осмотра или других бюджетных видах проверок.

Записи

ГОСТ 17410-78

Группа В69

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОНТРОЛЬ НЕРАЗРУШАЮЩИЙ

ТРУБЫ МЕТАЛЛИЧЕСКИЕ БЕСШОВНЫЕ ЦИЛИНДРИЧЕСКИЕ

Методы ультразвуковой дефектоскопии

Non-destructive testing. Metal seamless cylindrical pipes and tubes. Ultrasonic methods of defekt detection


МКС 19.100
23.040.10

Дата введения 1980-01-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством тяжелого, энергетического и транспортного машиностроения СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 06.06.78 N 1532

3. ВЗАМЕН ГОСТ 17410-72

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер пункта, подпункта

5. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4-94)

6. ИЗДАНИЕ (сентябрь 2010 г.) с Изменениями N 1, , утвержденными в июне 1984 г., июле 1988 г. (ИУС 9-84, 10-88)


Настоящий стандарт распространяется на прямые металлические однослойные бесшовные цилиндрические трубы, изготовленные из черных и цветных металлов и сплавов, и устанавливает методы ультразвуковой дефектоскопии сплошности металла труб для выявления различных дефектов (типа нарушения сплошности и однородности металла), расположенных на наружной и внутренней поверхностях, а также в толще стенок труб и обнаруживаемых ультразвуковой дефектоскопической аппаратурой.

Действительные размеры дефектов, их форма и характер настоящим стандартом не устанавливаются.

Необходимость проведения ультразвукового контроля, объем его и нормы недопустимых дефектов должны определяться в стандартах или технических условиях на трубы.

1. АППАРАТУРА И СТАНДАРТНЫЕ ОБРАЗЦЫ

1.1. При контроле используют: ультразвуковой дефектоскоп; преобразователи; стандартные образцы, вспомогательные устройства и приспособления для обеспечения постоянных параметров контроля (угла ввода, акустического контакта, шага сканирования).

Форма паспорта стандартного образца приведена в приложении 1а.


1.2. Допускается применять аппаратуру без вспомогательных приспособлений и устройств для обеспечения постоянных параметров контроля при перемещении преобразователя вручную.

1.3. (Исключен, Изм. N 2).

1.4. Выявленные дефекты металла труб характеризуются эквивалентной отражающей способностью и условными размерами.

1.5. Номенклатура параметров преобразователей и методы их измерений - по ГОСТ 23702 .


1.6. При контактном способе контроля рабочую поверхность преобразователя притирают по поверхности трубы при наружном диаметре ее меньше 300 мм.

Вместо притирки преобразователей допускается использование насадок и опор при контроле труб всех диаметров преобразователями с плоской рабочей поверхностью.

1.7. Стандартным образцом для настройки чувствительности ультразвуковой аппаратуры при проведении контроля служит отрезок бездефектной трубы, выполненный из того же материала, того же типоразмера и имеющий то же качество поверхности, что и контролируемая труба, в котором выполнены искусственные отражатели.

Примечания:

1. Для труб одного сортамента, отличающихся по качеству поверхности и составу материалов, допускается изготовление единых стандартных образцов, если при одинаковой настройке аппаратуры амплитуды сигналов от одинаковых по геометрии отражателей и уровень акустических шумов совпадают с точностью не менее ±1,5 дБ.

2. Допускается предельное отклонение размеров (диаметр, толщина) стандартных образцов от размеров контролируемой трубы, если при неизменной настройке аппаратуры амплитуды сигналов от искусственных отражателей в стандартных образцах отличаются от амплитуды сигналов от искусственных отражателей в стандартных образцах того же типоразмера, что и контролируемая труба, не более чем на ±1,5 дБ.

3. Если металл труб неоднороден по затуханию, то допускается разделение труб на группы, для каждой из которых должен быть изготовлен стандартный образец из металла с максимальным затуханием. Методика определения затухания должна быть указана в технической документации на контроль.

1.7.1. Искусственные отражатели в стандартных образцах для настройки чувствительности ультразвуковой аппаратуры на контроль продольных дефектов должны соответствовать черт.1-6, на контроль поперечных дефектов - черт.7-12, на контроль дефектов типа расслоений - черт.13-14.

Примечание. Допускается использовать другие типы искусственных отражателей, предусмотренные в технической документации на контроль.

1.7.2. Искусственные отражатели типа риски (см. черт.1, 2, 7, 8) и прямоугольного паза (см. черт.13) используются преимущественно при автоматизированном и механизированном контроле. Искусственные отражатели типа сегментного отражателя (см. черт.3, 4, 9, 10), зарубки (см. черт.5, 6, 11, 12), плоскодонного отверстия (см. черт.14) используются преимущественно при ручном контроле. Вид искусственного отражателя, его размеры зависят от способа контроля и от типа применяемой аппаратуры и должны предусматриваться в технической документации на контроль.

Черт.1

Черт.3

Черт.8

Черт.11

1.7.3. Риски прямоугольной формы (черт.1, 2, 7, 8, исполнения 1) применяются для контроля труб с номинальной толщиной стенки, равной или большей 2 мм.

Риски треугольной формы (черт.1, 2, 7, 8, исполнения 2) применяются для контроля труб с номинальной толщиной стенки любой величины.

(Измененная редакция, Изм. N 1).

1.7.4. Угловые отражатели типа сегмента (см. черт.3, 4, 9, 10) и зарубки (см. черт.5, 6, 11, 12) используются при ручном контроле труб наружным диаметром свыше 50 мм и толщиной более 5 мм.

1.7.5. Искусственные отражатели в стандартных образцах типа прямоугольного паза (см. черт.13) и плоскодонных отверстий (см. черт.14) используются для настройки чувствительности ультразвуковой аппаратуры на выявление дефектов типа расслоений при толщине стенки трубы больше 10 мм.

1.7.6. Допускается изготовление стандартных образцов с несколькими искусственными отражателями при условии, что расположение их в стандартном образце исключает их взаимное влияние друг на друга при настройке чувствительности аппаратуры.

1.7.7. Допускается изготовление составных стандартных образцов, состоящих из нескольких отрезков труб с искусственными отражателями при условии, что границы соединения отрезков (сваркой, свинчиванием, плотной посадкой) не влияют на настройку чувствительности аппаратуры.

1.7.8. В зависимости от назначения, технологии изготовления и качества поверхности контролируемых труб следует использовать один из типоразмеров искусственных отражателей, определяемых рядами:

Для рисок:

Глубина риски , % от толщины стенки трубы: 3, 5, 7, 10, 15 (±10%);

- длина риски , мм: 1,0; 2,0; 3,0; 5,0; 10,0; 25,0; 50,0; 100,0 (±10%);

- ширина риски , мм: не более 1,5.

Примечания:

1. Длина риски дана для ее части, имеющей постоянную глубину в пределах допуска; участки входа и выхода режущего инструмента не учитываются.

2. Допускаются на углах риски закругления, связанные с технологией ее изготовления, не больше 10% .


Для сегментных отражателей:

- высота , мм: 0,45±0,03; 0,75±0,03; 1,0±0,03; 1,45±0,05; 1,75±0,05; 2,30±0,05; 3,15±0,10; 4,0±0,10; 5,70±0,10.

Примечание. Высота сегментного отражателя должна быть больше длины поперечной ультразвуковой волны.


Для зарубок:

- высота и ширина должны быть больше длины поперечной ультразвуковой волны; отношение должно быть более 0,5 и менее 4,0.

Для плоскодонных отверстий:

- диаметр 2, мм: 1,1; 1,6; 2,0; 2,5; 3,0; 3,6; 4,4; 5,1; 6,2.

Расстояние плоского дна отверстия от внутренней поверхности трубы должно составлять 0,25; 0,5; 0,75, где - толщина стенки трубы.

Для прямоугольных пазов:

ширина , мм: 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 10,0; 15,0 (±10%).

Глубина должна составлять 0,25; 0,5; 0,75, где - толщина стенки трубы.

Примечание. Для плоскодонных отверстий и прямоугольных пазов допускаются другие значения глубины , предусмотренные в технической документации на контроль.


Параметры искусственных отражателей и методики их проверки указывают в технической документации на контроль.

(Измененная редакция, Изм. N 1).

1.7.9. Высота макронеровностей рельефа поверхности стандартного образца должна быть в 3 раза меньше глубины искусственного углового отражателя (риски, сегментного отражателя, зарубки) в стандартном образце, по которому проводится настройка чувствительности ультразвуковой аппаратуры.

1.8. При контроле труб с отношением толщины стенки к наружному диаметру 0,2 и менее искусственные отражатели на наружной и внутренней поверхностях выполняют одинакового размера.

При контроле труб с большим отношением толщины стенки к наружному диаметру размеры искусственного отражателя на внутренней поверхности должны устанавливаться в технической документации на контроль, однако допускается увеличение размеров искусственного отражателя на внутренней поверхности стандартного образца, по сравнению с размерами искусственного отражателя на наружной поверхности стандартного образца, не более чем в 2 раза.

1.9. Стандартные образцы с искусственными отражателями разделяются на контрольные и рабочие. Настройка ультразвуковой аппаратуры проводится по рабочим стандартным образцам. Контрольные образцы предназначены для проверки рабочих стандартных образцов для обеспечения стабильности результатов контроля.

Контрольные стандартные образцы не изготовляют, если рабочие стандартные образцы проверяют измерением параметров искусственных отражателей непосредственно не реже одного раза в 3 мес.

Соответствие рабочего образца контрольному проверяют не реже одного раза в 3 мес.

Рабочие стандартные образцы, которые не применяют в течение указанного периода, проверяют перед их использованием.

При несоответствии амплитуды сигнала от искусственного отражателя и уровня акустических шумов образца контрольному на ±2 дБ и более его заменяют новым.

(Измененная редакция, Изм. N 1).

2. ПОДГОТОВКА К КОНТРОЛЮ

2.1. Перед проведением контроля трубы очищают от пыли, абразивного порошка, грязи, масел, краски, отслаивающейся окалины и других загрязнений поверхности. Острые кромки на торце трубы не должны иметь заусенцев.

Необходимость нумерации труб устанавливают в зависимости от их назначения в стандартах или технических условиях на трубы конкретного типа. По согласованию с заказчиком трубы могут не нумероваться.

(Измененная редакция, Изм. N 2).

2.2. Поверхности труб не должны иметь отслоений, вмятин, забоин, следов вырубки, затеканий, брызг расплавленного металла, коррозионных повреждений и должны соответствовать требованиям к подготовке поверхности, указанным в технической документации на контроль.

2.3. Для механически обработанных труб параметр шероховатости наружной и внутренней поверхностей по ГОСТ 2789 40 мкм.

(Измененная редакция, Изм. N 1).

2.4. Перед контролем проверяют соответствие основных параметров требованиям технической документации на контроль.

Перечень параметров, подлежащих проверке, методика и периодичность их проверки должны предусматриваться в технической документации к применяемым средствам ультразвукового контроля.

2.5. Настройку чувствительности ультразвуковой аппаратуры производят по рабочим стандартным образцам с искусственными отражателями, указанными на черт.1-14 в соответствии с технической документацией на контроль.

Настройка чувствительности автоматической ультразвуковой аппаратуры по рабочим стандартным образцам должна отвечать условиям производственного контроля труб.

2.6. Настройку чувствительности автоматической ультразвуковой аппаратуры по стандартному образцу считают законченной, если не менее чем при пятикратном пропускании образца через установку в установившемся режиме происходит 100%-ная регистрация искусственного отражателя. При этом, если позволяет конструкция трубопротяжного механизма, стандартный образец перед вводом в установку поворачивают каждый раз на 60-80° относительно предшествующего положения.

Примечание. При массе стандартного образца больше 20 кг допускается пятикратное пропускание в прямом и обратном направлениях участка стандартного образца с искусственным дефектом.

3. ПРОВЕДЕНИЕ КОНТРОЛЯ

3.1. При контроле качества сплошности металла труб применяют эхо-метод, теневой или зеркально-теневой методы.

(Измененная редакция, Изм. N 1).

3.2. Ввод ультразвуковых колебаний в металл трубы осуществляется иммерсионным, контактным или щелевым способом.

3.3. Применяемые схемы включения преобразователей при контроле приведены в приложении 1.

Допускается применять другие схемы включения преобразователей, приведенные в технической документации на контроль. Способы включения преобразователей и типы возбуждаемых ультразвуковых колебаний должны обеспечивать надежное выявление искусственных отражателей в стандартных образцах в соответствии с пп.1.7 и 1.9.

3.4. Контроль металла труб на отсутствие дефектов достигается сканированием поверхности контролируемой трубы ультразвуковым пучком.

Параметры сканирования устанавливаются в технической документации на контроль в зависимости от применяемой аппаратуры, схемы контроля и размеров дефектов, подлежащих выявлению.

3.5. Для увеличения производительности и надежности контроля допускается применение многоканальных схем контроля, при этом преобразователи в контрольной плоскости должны располагаться так, чтобы исключить взаимное влияние их на результаты контроля.

Настройку аппаратуры по стандартным образцам проводят для каждого канала контроля отдельно.

3.6. Проверка правильности настройки аппаратуры по стандартным образцам должна проводиться при каждом включении аппаратуры и не реже чем через каждые 4 ч непрерывной работы аппаратуры.

Периодичность проверки определяется типом используемой аппаратуры, применяемой схемой контроля и должна устанавливаться в технической документации на контроль. При обнаружении нарушения настройки между двумя проверками вся партия проконтролированных труб подлежит повторному контролю.

Допускается в течение одной смены (не более 8 ч) проводить периодическую проверку настройки аппаратуры при помощи устройств, параметры которых определяют после настройки аппаратуры по стандартному образцу.

3.7. Метод, основные параметры, схемы включения преобразователей, способ ввода ультразвуковых колебаний, схему прозвучивания, способы разделения ложных сигналов и сигналов от дефектов устанавливают в технической документации на контроль.

Форма карты ультразвукового контроля труб приведена в приложении 2.

3.6; 3.7. (Измененная редакция, Изм. N 1).

3.8. В зависимости от материала, назначения и технологии изготовления трубы проверяют на:

а) продольные дефекты при распространении ультразвуковых колебаний в стенке трубы в одном направлении (настройка по искусственным отражателям, черт.1-6);

б) продольные дефекты при распространении ультразвуковых колебаний в двух направлениях навстречу друг другу (настройка по искусственным отражателям, черт.1-6);

в) продольные дефекты при распространении ультразвуковых колебаний в двух направлениях (настройка по искусственным отражателям, черт.1-6) и поперечные дефекты при распространении ультразвуковых колебаний в одном направлении (настройка по искусственным отражателям черт.7-12);

г) продольные и поперечные дефекты при распространении ультразвуковых колебаний в двух направлениях (настройка по искусственным отражателям черт.1-12);

д) дефекты типа расслоений (настройка по искусственным отражателям (черт.13, 14) в сочетании с подпунктами а, б, в, г .

3.9. При контроле чувствительность аппаратуры настраивают так, чтобы амплитуды эхо-сигналов от внешнего и внутреннего искусственных отражателей отличались не более чем на 3 дБ. Если это различие нельзя компенсировать электронными устройствами или методическими приемами, то контроль труб на внутренние и внешние дефекты проводят по раздельным электронным каналам.

4. ОБРАБОТКА И ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ КОНТРОЛЯ

4.1. Оценку сплошности металла труб проводят по результатам анализа информации, получаемой в результате контроля, в соответствии с требованиями, установленными в стандартах или технических условиях на трубы.

Обработка информации может выполняться либо автоматически с использованием соответствующих устройств, входящих в установку контроля, либо дефектоскопистом по данным визуальных наблюдений и измеряемым характеристикам обнаруживаемых дефектов.

4.2. Основной измеряемой характеристикой дефектов, по которой производят разбраковку труб, является амплитуда эхо-сигнала от дефекта, которую измеряют сравнением с амплитудой эхо-сигнала от искусственного отражателя в стандартном образце.

Дополнительные измеряемые характеристики, используемые при оценке качества сплошности металла труб, в зависимости от применяемой аппаратуры, схемы и метода контроля и искусственных настроечных отражателей, назначения труб указывают в технической документации на контроль.

4.3. Результаты ультразвукового контроля труб вписывают в журнал регистрации или в заключение, где должны быть указаны:

- типоразмер и материал трубы;

- объем контроля;

- техническая документация, по которой выполняется контроль;

- схема контроля;

- искусственный отражатель, по которому настраивалась чувствительность аппаратуры при контроле;

- номера стандартных образцов, применяемых при настройке;

- тип аппаратуры;

- номинальная частота ультразвуковых колебаний;

- тип преобразователя;

- параметры сканирования.

Дополнительные сведения, подлежащие записи, порядок оформления и хранения журнала (или заключения), способы фиксации выявленных дефектов должны устанавливаться в технической документации на контроль.

Форма журнала ультразвукового контроля труб приведена в приложении 3.

(Измененная редакция, Изм. N 1).

4.4. Все отремонтированные трубы должны пройти повторный ультразвуковой контроль в полном объеме, определенном в технической документации на контроль.

4.5. Записи в журнале (или заключении) служат для постоянного контроля за соблюдением всех требований стандарта и технической документации на контроль, а также для статистического анализа эффективности контроля труб и состояния технологического процесса их производства.

5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

5.1. При проведении работ по ультразвуковому контролю труб дефектоскопист должен руководствоваться действующими "Правилами технической эксплуатации электроустановок потребителей и правилами технической безопасности при эксплуатации электроустановок потребителей "*, утвержденными Госэнергонадзором 12 апреля 1969 года с дополнениями от 16 декабря 1971 года и согласованными с ВЦСПС 9 апреля 1969 года.
________________
* На территории Российской Федерации документ не действует. Действуют Правила технической эксплуатации электроустановок потребителей и Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок (ПОТ Р М-016-2001, РД 153-34.0-03.150-00). - Примечание изготовителя базы данных.

5.2. Дополнительные требования по технике безопасности и противопожарной технике устанавливаются в технической документации на контроль.

При эхо-методе контроля применяют совмещенную (черт.1-3) или раздельную (черт.4-9) схемы включения преобразователей.

При совмещении эхо-метода и зеркально-теневого метода контроля применяют раздельно-совмещенную схему включения преобразователей (черт.10-12).

При теневом методе контроля применяют раздельную (черт.13) схему включения преобразователей.

При зеркально-теневом методе контроля применяют раздельную (черт.14-16) схему включения преобразователей.

Примечание к черт.1-16: Г - вывод к генератору ультразвуковых колебаний; П - вывод к приемнику.

Черт.4

Черт.6

Черт.16

ПРИЛОЖЕНИЕ 1. (Измененная редакция, Изм. N 1)

ПРИЛОЖЕНИЕ 1a (cправочное). Паспорт на стандартный образец

ПРИЛОЖЕНИЕ 1a
Справочное

ПАСПОРТ
на стандартный образец N

Наименование предприятия-изготовителя

Дата изготовления

Назначение стандартного образца (рабочий или контрольный)

Марка материала

Типоразмер трубы (диаметр, толщина стенки)

Тип искусственного отражателя по ГОСТ 17410-78

Вид ориентации отражателя (продольная или поперечная)

Размеры искусственных отражателей и способ измерения:

Тип отражателя

Поверхность нанесения

Способ измерения

Параметры отражателя, мм

Риска (треугольная или прямоугольная)

Сегментный отражатель

Плоскодонное отверстие

расстояние

Прямоугольный паз

Дата периодической проверки

должность

фамилия, и., о.

Примечания:

1. В паспорте указываются размеры искусственных отражателей, которые изготовляются в данном стандартном образце.

2. Паспорт подписывается руководителями службы, проводящей аттестацию стандартных образцов, и службы отдела технического контроля.

3. В графе "Способ измерения" указывается метод измерения: непосредственный, при помощи слепков (пластмассовых оттисков), при помощи образцов-свидетелей (амплитудный метод) и инструмента или прибора, которыми проводились измерения.

4. В графе "Поверхность нанесения" указывается внутренняя или наружная поверхность стандартного образца.


ПРИЛОЖЕНИЕ 1а. (Введено дополнительно, Изм. N 1).

ПРИЛОЖЕНИЕ 2 (рекомендуемое). Карта ультразвукового контроля труб при ручном способе сканирования

Номер технической документации на контроль

Типоразмер труб (диаметр, толщина стенки)

Марка материала

Номер технической документации, регламентирующей нормы оценки годности

Объем контроля (направления прозвучивания)

Тип преобразователя

Частота преобразователя

Угол падения луча

Тип и размер искусственного отражателя (или номер стандартного образца) для настройки чувствительности фиксации

и поисковой чувствительности

Тип дефектоскопа

Параметры сканирования (шаг, скорость контроля)

Примечание. Карта должна составляться инженерно-техническими работниками службы дефектоскопии и согласовываться, при необходимости, с заинтересованными службами предприятия (отделом главного металлурга, отделом главного механика и т.п.).

Дата конт-
роля

Номер пакета, предъявки, серти-
фиката

Коли-
чество труб, шт.

Параметры контроля (номер стандартного образца, размеры искусственных дефектов, тип установки, схема контроля, рабочая частота УЗК, размер преобразователя, шаг контроля)

Номера прове-
ренных труб

Результаты УЗК

Подпись дефекто-
скописта (оператора-
контролера) и ОТК

Раз-
мер, мм

Мате-
риал

номера труб без де-
фектов

номера труб с дефек-
тами


ПРИЛОЖЕНИЕ 3. (Измененная редакция, Изм. N 1).



Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание
Трубы металлические и соединительные
части к ним. Часть 4. Трубы из черных
металлов и сплавов литые и
соединительные части к ним.
Основные размеры. Методы технологических
испытаний труб: Сб. ГОСТов. -
М.: Стандартинформ, 2010

Мониторинг технического состояния газопроводов является важной и ответственной задачей. Их повреждения и прорывы могут повлечь техногенные катастрофы с серьезными экологическими последствиями, финансовыми убытками и сбоями в промышленной деятельности.

Сварные швы на стыках стальных секций в трубопроводах являются самым уязвимым местом конструкции. Причем их прочность не зависит от давности или новизны соединения. Они нуждаются в постоянном контроле герметичности.

Стенки труб менее уязвимы, но в процессе эксплуатации они подвергаются давлению и агрессивному воздействию от перегоняемых веществ изнутри и неблагоприятным внешним влияниям снаружи. В результате даже прочные материалы и надежные защитные покрытия со временем могут повреждаться, деформироваться, портиться и разрушаться.

Для мониторинга и своевременного обнаружения дефектов применяется ультразвуковой контроль трубопроводов. С его помощью можно обнаружить даже самые мелкие или скрытые несовершенства шовных соединений или стенок труб.

На чем основана эта технология?

В основе ультразвукового метода диагностики лежат акустические волновые колебания, неразличимые для слуха человека, их регистрация и приборный анализ. Эти волны проходят через металл с определенной скоростью. Если в нем содержатся пустоты, скорость меняется и определяется приборами, как и отклонения в движении волнового потока из-за встречаемых препятствий или мест структурной неоднородности материала. По характеристикам акустических волн также можно понять форму и размеры дефектов, их расположение.

Как осуществляется ультразвуковой контроль газопроводов?

При проведении мониторинга в автоматическом режиме используются инфразвуковые системы, работающие на основе аппаратных и программных методов. Приборы для сбора акустической информации, установленные группами вдоль трубопровода на определенном расстоянии друг от друга, передают ее по каналам связи в диспетчерские пункты для интеграции, обработки и анализа. Фиксируются количество, координаты и параметры обнаруженных изъянов или утечек. Результаты сигналов отслеживаются специалистами на мониторе.

Автоматизированная инфразвуковая система мониторинга трубопроводов позволяет осуществлять постоянную дистанционную проверку их работы, контроль и управление в реальном времени с возможностью диагностики труднодоступных участков и отсеков газораспределения, с использованием сочетания одновременно нескольких методов мониторинга для большей точности результата и оперативного обнаружения дефектов, выявления утечек. Это современное оборудование высокого класса.

К системе могут быть также подключены датчики давления, температуры, расходомеры и измерители других параметров для получения информации о технологических процессах, происходящих в трубопроводе.

Преимущества метода:

  • ультразвуковое обследование – это бережный и неразрушающий контроль трубопроводов,
  • имеет высокую чувствительность и диагностическую точность,
  • минимальное время для обнаружения утечек газа или других веществ,
  • возможность дистанционного наблюдения,
  • безопасность,
  • удобство и простота монтажа и эксплуатации системы,
  • обследование не останавливает и не влияет на процесс технической эксплуатации трубопровода,
  • подходит для всех видов материалов, из которых изготавливаются трубы,
  • может использоваться при наземной и подземной прокладке труб,
  • может осуществляться в любых климатических условиях,
  • выгодно по экономическим затратам.

Предложения нашей компании для проведения мониторинга трубопроводов.

Качественный мониторинг состояния трубопроводов – это гарантия их безопасной эксплуатации, надежной работы и страховка от ущерба. Он обеспечивается благодаря надежности и эффективности применяемого оборудования.

Компания СМИС Эксперт занимается разработкой диагностических приборов и систем мониторинга с использованием современных научных знаний и инновационных технологий. Применение таких систем на практике обеспечивает высокий уровень и точность контроля целостности магистральных трубопроводов, своевременное обнаружение любых видов дефектов и предотвращение возникновения чрезвычайных ситуаций.

Воспользуйтесь нашими услугами по профессиональной организации ультразвукового контроля газопроводов и других объектов повышенной значимости, когда нужен опыт, ответственный подход и безупречный результат.

Ждем ваших заявок!

Поделиться